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ABSTRACT
We consider the task of discovering the top-𝐾 reliable approximate
functional dependenciesX → 𝑌 from high dimensional data. While
naivelymaximizingmutual information involving high dimensional
entropies over empirical data is subject to false discoveries, cor-
recting the empirical estimator against data sparsity can lead to
efficient exact algorithms for robust dependency discovery. Pre-
vious approaches focused on correcting by subtracting expected
values of different null hypothesis models. In this paper, we con-
sider a different correction strategy and counter data sparsity using
uniform priors and smoothing techniques, that leads to an efficient
and robust estimating process. In addition, we derive an admissi-
ble and tight bounding function for the smoothed estimator that
allows us to efficiently solve via branch-and-bound the hard search
problem for the top-𝐾 dependencies. Our experiments show that
our approach is much faster than previous proposals, and leads to
the discovery of sparse and informative functional dependencies.
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1 INTRODUCTION
Discovering what subsets X of our descriptive variablesX allow for
an exact or approximate reconstruction of a given target variable 𝑌
is a core task in exploratory data mining [10, 12]. The example appli-
cations of approximate functional dependency discovery are
many, as the presence of significant dependencies can provide valu-
able insight in the data generating process [4, 6], while the absence
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of such dependencies allows us to verify that the target cannot be
reconstructed and is hence private within the data. Approximate
functional dependency discovery is related, but different from three
well known applications, namely key discovery in databases [9, 13],
feature selection in machine learning [7], and Markov blanket dis-
covery in Bayesian networks [21]. Unlike key discovery, we do
not operate under a closed world assumption [5], and unlike fea-
ture selection, we are explicitly interested in discovering the top-𝐾
strongest joint dependencies, rather than pairwise associations and
mostly greedy answers [2]. Lastly, Markov blankets are defined for
Bayesian networks, while functional dependencies do not impose a
structure (i.e., a DAG) for the data generating process and hence
are more general and well-suited for exploratory data analysis.

Before we can discover the top-𝑘 strongest dependencies, we
need a score for approximate functional dependencies from X to 𝑌
that allows for effective search. From information theory, we know
that mutual information is the perfect score as it can detect depen-
dencies regardless of their form [3]. Mutual information, however,
is defined over distributions rather than over data samples, which
means that in practice we have to estimate it. While asymptotically
efficient [1], for limited sample sizes the empirical estimator has
a positive bias [16] that is a function of the domain size of X and
𝑌 . This results to trivially identifying the complete set of variables
X as a top dependency, regardless of whether X includes variables
that are actually informative for 𝑌 [10]. To put it differently, the
empirical estimator “breaks" under the data sparsity induced by the
high-dimensional search space.

Recent work by Mandros et al. [10] and Nguyen et al. [12], ad-
dress the un-reliability of the empirical estimator by subtracting
expected values under the hypothesis of independence. While each
of these improves over the empirical estimator, the discovery pro-
cess can be inefficient in practice: Nguyen et al. bound themaximum
search level meaning that all candidates below that level have to
be evaluated which can be impractical for large dimensionalities,
while the estimator proposed by Mandros et al. is based on sample
permutations and therewith has high computational complexity.

In this paper, we approach the problem of discovering reliable
top-𝑘 dependencies from a different angle. Instead of subtracting
mean values from null models, we correct the mutual information
estimates using a uniform prior on the empirical distribution. This
way, the joint distribution 𝑃 (X, 𝑌 ) for sparse data tends to unifor-
mity, and therefore the inflated estimates of the empirical estimator
are corrected. The resulting score is a Laplace smoothed mutual
information estimator (SMI). We show that SMI is indeed reliable
in practice, and that it can be employed to efficiently search for the
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top-𝑘 strongest dependencies with our recently proposed branch-
and-bound framework [14] by deriving an admissible and tight
bounding function for pruning.

In sum, the main contributions of this paper are as follows.We (1)
propose the use of uniform priors to address the reliability problem
and arrive at SMI as a score to mine statistically sound functional
dependencies, (2) show that computing the exact upper bound of
SMI leads to an NP-hard problem, (3) show how to instantiate a
branch-and-bound algorithm that allows to efficiently discover the
top-𝑘 dependencies scored by SMI thanks to an admissible, tight,
yet tractable upper bound for SMI, and (4) empirically evaluate our
approach in terms of runtime and statistical efficiency.

For readability and conciseness we postpone all proofs to the
appendix.Wemake all code and data available in the supplementary.

2 SMOOTHED INFORMATION
Although we are not the first to consider estimation of mutual in-
formation using Bayesian approaches [17, 18], we are to the best
of our knowledge the first to consider smoothing for reliable func-
tional dependency discovery.1 In this section we formally define
smoothened mutual information (SMI) and study its properties.
The computational problem of efficiently discovering the top-𝐾
dependencies based on this score is postponed to Sec. 3.

2.1 Notation and basic notions
We start with introducing the notation we will use throughout
the paper. In general, we use upper cases letters 𝑋 to denote ran-
dom variables, and lower cases letters 𝑥 for their values. Given
a categorical variable 𝑍 , we denote its set of possible values, or
domain, byD𝑍 , and the number of possible values, or cardinality by
𝑁𝑍 = |D𝑍 |. A set of variables X will be written in bold and conve-
niently represented by a vector containing variables 𝑋𝑖 ordered by
increasing order of rank 𝑖 so that it can be unambiguously mapped
to a vector x of corresponding values. A comma denotes vector
concatenation between vectors, variables and values, e.g (X,Z, 𝑌 )
or (x, 𝑦). Notions of domain DX and number 𝑁X of values are natu-
rally extended to vectors of variables, where domains are cartesian
products, i.e DX =

∏
1≤𝑘≤ 𝑗 D𝑋𝑖𝑘 . Given two sets of features X and

Z such that X ⊆ Z and given some value x ∈ DX, DZ/x is the set of
values z ∈ DZ matching x, i.e. whose restriction on variables of X
is x. The number |DZ/x | of these values is denoted 𝑁 x

Z . Given some
probability space, probability mass function of a random vector Z
of features is denoted 𝑃Z. Its associated entropy is

H(Z) def
= E

(
log

(
1
𝑃Z

))
= −

∑
z∈DZ

xlogx (𝑃Z (z)) , (1)

where xlogx denotes function 𝑥 ↦→ 𝑥 log(𝑥), introduced for con-
ciseness and log(𝑥) refers to logarihm of 𝑥 to an arbitrary base.
Entropy computed from a set of counts N = (𝑛𝑖 ) is also denoted

ℎ(N) = −
∑
𝑛∈N

xlogx
(

𝑛∑
𝑛′∈N 𝑛′

)
. (2)

1The measures we present here are not be confused with the smooth min or max

entropies as used in Quantum Information Theory.
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Figure 1: Expected values (in bits) of plugin entropy Ĥ(𝑍 |𝑝)
(left) and smoothed entropy H̃(1) (𝑍 |𝑝) for 𝛼 = 1 (right) for
different number of samples 𝑛 from a binomial distribution
B(𝑛, 𝑝). The plugin underestimates under sparsity, while
smoothing shows a positive bias that helps with overfitting.

Mutual information shared between X and 𝑌 is then

I(X;𝑌 ) def
= H(𝑌 ) + H(X) − H(X, 𝑌 ) .
= H(𝑌 ) − H(𝑌 |X) (3)

Given a dataset and a setX of features, we denote by 𝑛x the number
of samples for which X is equal to x. The total number of samples
is denoted 𝑛. We can estimate entropy measures given a finite set
of iid samples by replacing the oracle distributions 𝑃X, 𝑃𝑌 and 𝑃X,𝑌
by their MLE estimators 𝑃X, 𝑃𝑌 and 𝑃X,𝑌 with

𝑃X,𝑌 (x, 𝑦) =
𝑛x,𝑦

𝑛
𝑃X (x) =

𝑛x
𝑛

𝑃𝑌 (𝑦) =
𝑛𝑦

𝑛

𝑛 =
∑
x,𝑦

𝑛x,𝑦 𝑛x =
∑
𝑦

𝑛x,𝑦 𝑛𝑦 =
∑
x
𝑛x,𝑦 .

We will mark such plugin estimators with a hat, e.g Î(X;𝑌 ).

2.2 Problem of Overfitting
We consider the problem of finding strong approximate functional

dependencies X → 𝑌 for a given target 𝑌 , such that once the value
of X is known, the remaining uncertainty about value of 𝑌 is mini-
mal. Given that we only have a finite set of samples, we can only
approximate the true joint distribution 𝑃X,𝑌 . Although common-
place, simply replacing I(X;𝑌 ) by its plugin estimator Î(X;𝑌 ) is a
very bad solution in practice, as for limited sample sizes both Ĥ(𝑋 )
and Ĥ(𝑋 | 𝑌 ) tend to strongly underestimated the true entropy.

We illustrate this with an example in Fig. 1a, where 𝑍 is a
Bernoulli variable of parameter 𝑝 . We have the expected value
E

(
Ĥ(𝑍 | 𝑝)

)
of the plugin entropy with respect to the binomial

distribution B(𝑛, 𝑝) of 𝑛 iid samples as

E
(
Ĥ(𝑍 |𝑝)

)
=

𝑛∑
𝑖=0

(
𝑛

𝑖

)
𝑝𝑖 (1 − 𝑝)𝑛−𝑖ℎ( [𝑖, 𝑛 − 𝑖]) . (4)

As Fig. 1a shows, the curves for𝑛 < ∞ are all below the true entropy.
That is, the plugin entropy Ĥ(𝑍 |𝑝) exhibits a strong negative bias
whenever the number 𝑛 of samples is small, with the extreme case
of Ĥ(𝑍 ) always being 0 whenever 𝑛 = 1. Obviously, such a strong
statement cannot be drawn from a single observation. Although
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no-one would voluntarily measure entropy over a single sample,
in practice we do often have to estimate entropy under sparsity:
as the domain of a set of features X grows exponentially in the
size of the set, the number of samples we have to measure the
conditional entropy of 𝑌 given a value instantiation of X, Ĥ(𝑌 |X =
x), quickly tends to 0. Because expressions of Ĥ(𝑌 |X) and Î(X;𝑌 )
result from averaging entropy terms Ĥ(𝑌 |X = x), these measures
are systematically overconfident. In particular, we have that Ĥ(𝑌 |X)
(resp. Î(X;𝑌 )) has a negative (resp. positive) bias that increases with
the size of X. Romano et al. [15] dubbed this the “just by chance”
effect, also known as overfitting in Machine Learning. In contrast to
existing approaches subtracting expected values of null hypothesis
models, we propose to tackle this problem by “smoothing" data
sparsity using a flat prior.

2.3 Laplace Smoothing
Laplace smoothing is a well-known shrinkage technique to reduce
variance when estimating categorical distributions from samples:
given a variable 𝑍 following a categorical distribution 𝑃𝑍 of un-
known probabilities

(
𝑝1, . . . , 𝑝𝑁𝑍

)
and given a dataset of 𝑛 iid sam-

ples, let
(
𝑛1, . . . , 𝑛𝑁𝑍

)
be the histogram of corresponding values of

𝑍 occurring in the dataset. Then the 𝛼-smoothed estimator 𝑃 (𝛼)𝑍 of
distribution 𝑃𝑍 for some 𝛼 ≥ 0 is defined by

𝑃
(𝛼)
𝑍 (𝑧) = 𝑛𝑧 + 𝛼

𝑛 + 𝑁𝑍 × 𝛼 . (5)

Setting 𝛼 = 0 gives the standard maximum likelihood estimator
(MLE) which equates probabilities of events with their frequencies
of occurrence in data. The parameter 𝛼 is called pseudocount since
when 𝛼 is an integer, it simulates the occurrence of 𝛼 extra samples
for each possible value of 𝑍 . The larger 𝛼 , the smaller the variance
of the estimator but the larger its bias. Put another way, these
pseudocounts act as a regularizer.

Laplace smoothing is actually a sound consequence of Bayesian
estimation since when a symmetric Dirichlet distribution with a
concentration parameter of 𝛼 + 1 is chosen as a conjugate prior for
distribution of 𝑍 , smoothed estimator 𝑃 (𝛼)𝑍 of Eq. 5 coincides with
the MAP estimator, i.e. the mode of a posteriori Dirichlet distribu-
tion conditioned on samples. Therefore, like any MAP estimator,
smoothed distributions can be seen as regularized estimators mod-
erating randomness of observations by prior knowledge. In our
case, this prior knowledge is more a “prior ignorance” since the 𝛼-
symmetric Dirichlet prior tends to privilege uniform distributions.

We obtain both smoothed entropy and smoothed mutual informa-

tion (SMI) by first applying Laplace smoothing to empirical distri-
butions and then applying estimators to the resulting smoothed
distribution. We write H̃(𝛼) (𝑍 ) for H

(
𝑃
(𝛼)
𝑍

)
= ℎ ((𝑛𝑧 + 𝛼)𝑧). Im-

portantly, these smoothed estimators we so obtain are statistically
consistent, i.e they tend to the true measure whenever the number
𝑛 of samples tends to infinity. Whenever 𝑛 is finite, on the other
hand, they benefit from a regularization effect; compared to plugin
entropy, smoothed entropy (resp. smoothed mutual information)
has a positive (resp. negative) bias, that integrates uncertainty due
to the partial knowledge of the true distribution (sometimes called
epistemic uncertainty).
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Figure 2: Expected value and variance of plugin entropy
Ĥ(𝑍 | 𝑝) (blue) and smoothed entropy H̃(1) (𝑍 | 𝑝) with 𝛼 = 1
(green) with respect to binomial distribution B(𝑛, 𝑝) of 𝑛 iid
samples of a Bernoulli variable 𝑍 of parameter 𝑝 as a func-
tion of 𝑝, for different values of 𝑛. Red line is the true en-
tropy 𝐻 (𝑍 | 𝑝). Expected values for the estimators are given
by blue and green lines, and their variance 𝜎2 as blue resp.
green shaded areas made of 2𝜎-wide confidence intervals
centered on expected value.

This is clearly visible on Fig. 1b, where the expected value of
E

(
H̃(1) (𝑍 |𝑝)

)
is obtained by simply replacing the term ℎ( [𝑖, 𝑛− 𝑖])

in Eq. 4 with ℎ( [𝑖 + 𝛼, 𝑛 − 𝑖 + 𝛼]). Like it’s plug-in counterpart,
smoothed entropy H̃(1) (𝑍 |𝑝) is also constant when 𝑛 = 1, how-
ever, rather than taking a minimal value, smoothed entropy takes
an almost maximal value of 0.91 bits. Not only are the smoothed
scores consistent with the number of observations, they are also
regularized and hence have much lower variance compared to the
plugin. We illustrate this in Fig. 2, where we indicate for different
sample sizes 𝑛 the expected values and variances of both the plugin
(blue) and the smoothed estimator (green). As the figure shows, the
statistical fluctuations for the smoothed score are lower than that
of the plugin, which as we will see allows for robust optimization.

2.4 Problem statement
With the above definition and preliminary analysis of SMI, we can
now formally state the problem at hand.

Problem 1 (Top-K FunctionalDependencyDiscovery). Given
a dataset 𝐷 over descriptive variables Z and target variable 𝑌 , a

coefficient 𝛼 and a number 𝐾 , find the 𝐾 sets {X𝑖 }1≤𝑖≤𝐾 ⊆ Z of

descriptive variables that achieve the highest 𝛼-smoothed mutual

information Ĩ(𝛼) (X;𝑌 ) with 𝑌 .
To solve this problem, we first derive the exact expression of

Ĩ(𝛼) (X;𝑌 ). Given some smoothed joint distribution and its contin-
gency table illustrated on Tab.1 , we first observe that rows and
columns (i.e. marginal distributions) sum up pseudocounts the same
way they sum up real samples. We formalize this as follows.
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x1 x2 . . . Total
𝑦1 𝑛x1,𝑦1 + 𝛼 𝑛x2,𝑦1 + 𝛼 . . . 𝑛𝑦1 + 𝑁X𝛼
𝑦2 𝑛x1,𝑦2 + 𝛼 𝑛x2,𝑦2 + 𝛼 . . . 𝑛𝑦2 + 𝑁X𝛼
.
.
.

.

.

.
.
.
.

.

.

.

Total 𝑛x1 + 𝑁𝑌𝛼 𝑛x2 + 𝑁𝑌𝛼 . . . 𝑛 + 𝑁X𝑁𝑌𝛼

Table 1: Notations for counts in contingency table of X ver-
sus 𝑌 including pseudocounts.

Property 1. Smoothed marginals

𝑃
(𝑁𝑌𝛼)
X (x) =

∑
𝑦∈D𝑌

𝑃
(𝛼)
X,𝑌 (x, 𝑦)

𝑃
(𝑁X𝛼)
𝑌 (𝑦) =

∑
x∈DX

𝑃
(𝛼)
X,𝑌 (x, 𝑦) .

We can now straightforwardly derive the following forms of
smoothed entropy and smoothed mutual information.

Property 2. Smoothed entropy measures

H̃(𝛼) (𝑌 |X) = H̃(𝛼) (X, 𝑌 ) − H̃(𝑁𝑌 𝛼) (X)
Ĩ(𝛼) (X;𝑌 ) = H̃(𝑁X𝛼) (𝑌 ) − H̃(𝛼) (𝑌 |X)

= H̃(𝑁𝑌𝛼) (X) + H̃(𝑁X𝛼) (𝑌 ) − H̃(𝛼) (X, 𝑌 ) .

Now that Problem 1 is fully specified, we will consider the com-
putational problem of optimizing it next.

3 ALGORITHM
In this sectionwe discuss howwe can exactly yet efficiently discover
the top-K functional dependency problem using branch-and-bound.

3.1 Introduction
Because of smoothing, SMI sadly has no structure—such as con-
vexity, monotonicity, modularity—that we can exploit for efficient
optimization. To illustrate the difference in behavior between SMI
and standard mutual information, let us consider a dataset over
arbitrarily many features Z, of a finite set of 𝑛 samples. It is easy to
see that when we increase the number of selected features X ⊆ Z,
the product 𝑁X 𝛼 tends to +∞ for any 𝛼 > 0. In other words, the
smoothed distribution over X and 𝑌 , 𝑃 (𝑁X 𝛼)

𝑌 tends to the uniform
distribution, and by an argument of continuity, the smoothed en-
tropy H̃(𝑁X 𝛼) (𝑌 ) tends to log (𝑁𝑌 ). As we can rewrite conditional
entropy, H̃(𝛼) (𝑌 |X), as an average of smoothed entropy terms

H̃(𝛼) (𝑌 |X) =
∑
x

𝑛x + 𝑁𝑌𝛼
𝑛 + 𝑁X𝑁𝑌𝛼

H̃(𝛼) (𝑌 |X = x) ,

and the relative number of “real counts” of 𝑃 (𝛼)
𝑌 |X=x gets smaller

and smaller relative to the (uniformly spread) pseudocounts 𝛼 ,
H̃(𝛼) (𝑌 |X) also tends to log (𝑁𝑌 ). As SMI is defined as the differ-
ence of these terms, it tends to zero. As a direct result of these
observations, we have that if we start from a singleton feature 𝑋 ,

the score will increase whenever we add a relevant feature, up to
the point where the smoothing effect of 𝛼 is not negligible anymore,
after which the score will decrease and tend to zero.

An approach to exactly solve such non trivial optimization prob-
lems is the branch and bound (BnB) search scheme, in which we
prune the current exploration branch as soon as we can infer that
there does not exist any pattern we can reach via this branch that is
better than the worst of the top-K patterns we have discovered so
far. To effectively use BnB we need an upper bound I on SMI that
is 1) tight as possible (as then we have maximum pruning power)
while 2) being efficiently computable (as we will have to compute
it very often), but most importantly, 3) be admissible (as else we
cannot guarantee that we return the true top-K). That is, we require

∀Z, X ⊆ Z =⇒ Ĩ(𝛼) (Z;𝑌 ) ≤ I(X) ,
as then and only then an exploration branch can safely be pruned
whenever I(X) ≤ Ĩ(𝛼) (X𝐾 ;𝑌 ) where X𝐾 is the 𝐾 th last ranked
top-𝐾 pattern found so far.

From here on, we will follow the convention where X denotes
the set of features that have so far been considered in the current
branch, while Z ⊇ X denotes any set of features containing X.

3.2 Problem decomposition
It is easy to see that the tightest admissible bound I𝑜𝑝𝑡 (X) is given
by the maximal smoothed mutual information Ĩ(𝛼) (Z;𝑌 ) that is
reachable in the current branch, and that can be computed using
only the information we used to compute score of just X, i.e. the
counts (𝑛x,𝑦). We can formalize the computation of this bound as
the following constrained optimization problem.

Problem 2. Given 𝛼 and counts (𝑛x,𝑦) for all values x of X and 𝑦

of 𝑌 , find the number 𝑁Z of values of Z and the 𝑁Z×𝑁𝑌 contingency

table (𝑛z,𝑦) for all values z and 𝑦, maximizing SMI with 𝑌 , i.e.

I𝑜𝑝𝑡 (X)
def

= max
(𝑛z,𝑦 )

(
Ĩ(𝛼) (Z;𝑌 )

)
,

given the 𝑁X × 𝑁𝑌 constraints

∀x, ∀𝑦, 𝑛x,𝑦 =
∑

z∈DZ/x

𝑛z,𝑦 ,

and where

Ĩ(𝛼) (Z;𝑌 ) = H̃(𝑁Z 𝛼) (𝑌 ) − H̃(𝛼) (𝑌 |Z) (6)

with H̃(𝛼) (𝑌 |Z) =
∑
z

𝑛z + 𝑁𝑌 𝛼
𝑛 + 𝑁Z 𝑁𝑌 𝛼

H̃(𝛼) (𝑌 |Z = z)

and H̃(𝛼) (𝑌 |Z = z) = −
∑
𝑦

xlogx
(
𝑛z,𝑦 + 𝛼
𝑛z + 𝑁𝑌 𝛼

)
.

Each constraint here has a variable number 𝑁 x
Z ≥ 1 of unknowns

such that
𝑁Z =

∑
x
𝑁 x
Z .

Because each value x is mapped to 𝑁𝑌 constraints that only relate
to part of the dataset matching x, the term H̃(𝛼) (𝑌 |Z) is better
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decomposed in away that makes the partition of the dataset induced
by the different values of X explicit.

H̃(𝛼) (𝑌 |Z) =
∑
x

𝑛x + 𝑁 x
Z 𝑁𝑌 𝛼

𝑛 + 𝑁Z 𝑁𝑌 𝛼
H̃(𝛼) (𝑌 |Z,X = x) (7)

with H̃(𝛼) (𝑌 |Z,X = x) def
=

∑
z∈DZ/x

𝑛z + 𝑁𝑌 𝛼
𝑛x + 𝑁 x

Z 𝑁𝑌 𝛼
H̃(𝛼) (𝑌 |Z = z) .

These latter terms H̃(𝛼) (𝑌 |Z,X = x) are “local” in the sense that
H̃(𝛼) (𝑌 |Z,X = x) only depends on counts 𝑛z,𝑦 for z ∈ DZ/x and
on the subset of the 𝑁𝑌 previous constraints mapped to value x. In
other words, it only depends on the subset of samples matching
value x. Therefore the initial optimization problem can be decom-
posed in two nested layers where the inner layer consists of “local”
optimization problems mapped to each value x of X and where
the outer layer is a single “global” optimization problem merging
solutions of the inner layer. More formally, using Eq. 6 and 7,

I𝑜𝑝𝑡 (X) = max
(𝑁 x

Z ),(𝑛z,𝑦 )

(
Ĩ(𝛼) (Z;𝑌 )

)
= max

(𝑁 x
Z )

(
H̃(𝑁Z 𝛼) (𝑌 ) − min

(𝑛z,𝑦 )

(
H̃(𝛼) (𝑌 |Z)

))
= max

(𝑁 x
Z )

(
H̃(𝑁Z 𝛼) (𝑌 ) −

∑
x

𝑛x + 𝑁 x
Z 𝑁𝑌 𝛼

𝑛 + 𝑁Z 𝑁𝑌 𝛼
�̃�

(𝛼,x)
𝑜𝑝𝑡 (𝑁 x

Z)
)
, (8)

where the lower bound �̃� (𝛼,x)
𝑜𝑝𝑡 (𝑁 ) denotes the solution of the “local”

optimization problem mapped to value x when the number 𝑁 x
Z is

set to a given constant 𝑁 and where these “local” optimization
problems are defined as follows:

Problem 3. Given 𝛼 , a value x, 𝑁𝑌 counts (𝑛x,𝑦) and a fixed

number 𝑁 x
Z = 𝑁 ≥ 1 of values z matching x, find the local optimal

bound

�̃�
(𝛼,x)
𝑜𝑝𝑡 (𝑁 ) def

= min
(𝑛z,𝑦 )

(
H̃(𝛼) (𝑌 |Z,X = x)

)
,

reached by the 𝑁 x
Z ×𝑁𝑌 contingency table (𝑛z,𝑦) minimizing the “lo-

cal” smoothed conditional entropy H̃(𝛼) (𝑌 |Z,X = x) while satisfying
the 𝑁𝑌 constraints

∀𝑦, 𝑛x,𝑦 =
∑
z
𝑛z,𝑦 .

While this problem admits a trivial solution for standard entropy
(i.e for 𝛼 = 0), finding its counterparts for 𝛼 > 0 is anything but
straightforward. To illustrate this, we consider the simple example
of 𝑁𝑌 = 4 with counts (𝑛x,𝑦)𝑦 = (4, 2, 1, 1) for some value x. In the
plugin case (i.e. 𝛼 = 0), the optimal contingency tables are those
that perfectly separate all values of 𝑌 , i.e. 𝑁 x

Z = 𝑁𝑌 , such as the
example depicted as Tab. 1a of which the entropy H(𝑌 |Z,X = x) is
zero. However, when we set 𝛼 = 1, the entropy H̃(𝛼) (𝑌 |Z,X = x) of
this table increases to 1.77 bits, and now it is the table as Tab. 1b that
achieves the minimum (1.73 bits). The optimal partition changes
again when we set 𝛼 ≥ 2, and is depicted as Tab. 1c.

This example illustrates that when 𝛼 increases, the optimal num-
ber 𝑁 x

Z of values for Z decreases. Intuitively, the weight of pseudo-
counts relatively to the weight of “real” counts (𝑛z,𝑦) increases with

(a) 𝛼 = 0

z1 z2 z3 z4

𝑦1 4 0 0 0
𝑦2 0 2 0 0
𝑦3 0 0 1 0
𝑦4 0 0 0 1

(b) 𝛼 = 1

z1 z2 z3

𝑦1 4 0 0
𝑦2 0 2 0
𝑦3 0 0 1
𝑦4 0 0 1

(c) 𝛼 = 2

z1 z2

𝑦1 4 0
𝑦2 0 2
𝑦3 0 1
𝑦4 0 1

Table 2: Example contingency tables minimizing H̃(𝛼) (𝑌 |
Z,X = x) when 𝑁Y = 4 and (𝑛x,𝑦)𝑦 = (4, 2, 1, 1), for different
values of 𝛼 . Pseudocounts are omitted for clarity.

𝛼 and the number of columns. Since pseudocounts are uniformly
distributed they also tend to increase the global entropy. Therefore
when 𝛼 increases, optimality tends to merge real counts in fewer
columns to counterbalance the increasing weight of pseudocounts.

This illustrates that Problem 3 does not have a trivial solution,
which is a pity. The worse news is that the exact computation of the
upper bound is NP-hard. Before we formally show this in Sec. 3.6,
it will be helpful to first introduce an admissible local bound.

3.3 Local Bound
Instead of using the exact upper bound, we can also use an estimator
that solves approximately Problem 3 by deriving an admissible local
lower bound �̃� (𝛼,x)

𝑎𝑝𝑝 (𝑁 ) for conditional entropy, i.e. such that

�̃�
(𝛼,x)
𝑎𝑝𝑝 (𝑁 ) ≤ �̃�

(𝛼,x)
𝑜𝑝𝑡 (𝑁 ) .

The main idea is to rewrite H̃(𝛼) (𝑌 |Z,X = x) as the uncontrolled
entropy term we aim to minimize, in terms of H̃(𝛼) (Z|𝑌,X = x)
of which we can express its optimal value as a function of known
counts 𝑛x,𝑦 . To this end, we consider the symmetric definition of
mutual information Ĩ(𝛼) (Z;𝑌 |X = x):

�̃�
(𝛼,x)
𝑜𝑝𝑡 (𝑁 ) = min

(𝑛z,𝑦 )
∀𝑦,∑𝑛z,𝑦=𝑛x,𝑦

(
H̃(𝛼) (𝑌 |Z,X = x)

)
= min

(𝑛z,𝑦 )
∀𝑦,∑𝑛z,𝑦=𝑛x,𝑦

(
H̃(𝑁 𝛼) (𝑌 |X = x)) − Ĩ(𝛼) (Z;𝑌 |X = x))

)
= H̃(𝑁 𝛼) (𝑌 |X = x) +

min
(𝑛z,𝑦 )

∀𝑦,∑𝑛z,𝑦=𝑛x,𝑦
(
H̃(𝛼) (Z|𝑌,X = x) − H̃(𝑁𝑌 𝛼) (Z|X = x)

)
(9)
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Although computing this minimum is NP-hard, we can obtain a
lower bound of it using the general property that for every pair of
real functions 𝑓 and 𝑔 with the same domain,

min
𝑤

(𝑓 (𝑤)) +min
𝑤

(𝑔(𝑤)) ≤ min
𝑤

(𝑓 (𝑤) + 𝑔(𝑤)) . (10)

Straightforwardly applying this to Eq. 9 gives an approximate ad-
missible local bound �̃� (𝛼,x)

𝑎𝑝𝑝 (𝑁 ), i.e.

�̃�
(𝛼,x)
𝑎𝑝𝑝 (𝑁 ) ≤ �̃�

(𝛼,x)
𝑜𝑝𝑡 (𝑁 ) ,

where

�̃�
(𝛼,x)
𝑎𝑝𝑝 (𝑁 ) def

= H̃(𝑁 𝛼) (𝑌 |X = x) + �̃� (𝛼,x)
1 (𝑁 ) − �̃�

(𝛼,x)
2 (𝑁 ) , (11)

with

�̃�
(𝛼,x)
1 (𝑁 ) def

= min
(𝑛z,𝑦 )

∀𝑦,∑𝑛z,𝑦=𝑛x,𝑦
(
H̃(𝛼) (Z|𝑌,X = x)

)
�̃�

(𝛼,x)
2 (𝑁 ) def

= max
(𝑛z,𝑦 )

∀𝑦,∑𝑛z,𝑦=𝑛x,𝑦
(
H̃(𝑁𝑌 𝛼) (Z|X = x)

)
.

On the one hand, �̃�
(𝛼,x)
2 (𝑁 ) is the maximal reachable value for

smoothed entropy H̃(𝑁𝑌 𝛼) (Z|X = x). This maximum is straight-
forwardly reached when 𝑃 (𝛼)Z |X=x is uniform, so

�̃�
(𝛼,x)
2 (𝑁 ) = log(𝑁 ) . (12)

Note that while optimistic in general, �̃�
(𝛼,x)
2 (𝑁 ) is in fact some-

times reachable, such as on Fig. 1c for𝑁Z = 2 (since all columns sum
up to the same total of 4), but often unreachable, such as in Fig. 1b
for 𝑁Z = 3 (since counts 4, 2, 1, 1 cannot be equally distributed over
the three columns).

On the other hand, �̃� (𝛼,x)
1 (𝑁 ) is the minimal reachable value of

H̃(𝛼) (Z|𝑌,X = x) whose expression relies on the next property.

Property 3. Given some random variable𝑊 known to take a

given number𝑁𝑊 of possible values (observed or not), and considering

all values of the 𝛼-smoothed entropy estimator H̃(𝛼) (𝑊 ) computed

from all possible sequences of 𝑛 samples for𝑊 , then the minimal

value is reached when all samples have the same value, so that

min
(𝑛𝑤 ) ∈N𝑁𝑊∑

𝑤 𝑛𝑤=𝑛

(
H̃(𝛼) (𝑊 )

)
= ℎ̃ (𝛼)𝑁𝑊

(𝑛) ,

with ℎ̃
(𝛼)
𝑁𝑊

(𝑛) = ℎ( [𝑛 + 𝛼, 𝛼, . . . , 𝛼︸   ︷︷   ︸
×𝑁𝑊 −1

])

= − xlogx
(

𝑛 + 𝛼
𝑛 + 𝑁𝑊 𝛼

)
− (𝑁𝑊 − 1) xlogx

(
𝛼

𝑛 + 𝑁𝑊 𝛼

)
.

We postpone the proof to Appendix 6.2.1. Following from this
property, we have that the minimal smoothed entropy is reached
by the same deterministic distributions as standard entropy. That
is, when all counts 𝑛𝑤 are equal to zero but one. However, whereas
the minimal value of standard entropy is zero, the minimal value
ℎ̃
(𝛼)
𝑁𝑊

(𝑛) of our smoothed entropy is a strictly positive function

decreasing with 𝑛 and increasing with 𝑁𝑊 . For instance, given
some value 𝑦 of 𝑌 , each of the three lines mapped to 𝑦 in each
table of Fig. 2 is such a deterministic distribution 𝑃 (𝛼)Z |𝑌=𝑦,X=x, thus

reaching its minimal bound ℎ̃ (𝛼)𝑁Z
(𝑛x,𝑦).

Using Prop. 3, we can rewrite �̃� (𝛼,x)
1 (𝑁 ) as

�̃�
(𝛼,x)
1 (𝑁 ) =

∑
𝑦

𝑛x,𝑦 + 𝑁 𝛼
𝑛x + 𝑁 𝑁𝑌 𝛼

min
(𝑛z,𝑦 )∑
𝑛z,𝑦=𝑛x,𝑦

(
H̃(𝛼) (Z|𝑌 = 𝑦,X = x)

)
=
∑
𝑦

𝑛x,𝑦 + 𝑁 𝛼
𝑛x + 𝑁 𝑁𝑌 𝛼

ℎ̃
(𝛼)
𝑁 (𝑛x,𝑦) . (13)

Finally, combining Eq. 11, 12 and 13 gives us an efficiently com-
putable and admissible local bound

�̃�
(𝛼,x)
𝑎𝑝𝑝 (𝑁 ) = log

(
𝑛x + 𝑁 𝑁𝑌 𝛼

𝑁

)
−(∑

𝑦 xlogx
(
𝑛x,𝑦 + 𝛼

) ) + (𝑁 − 1) 𝑁𝑌 xlogx(𝛼)
𝑛x + 𝑁 𝑁𝑌 𝛼

,

(14)
that we can use in a branch-and-bound algorithm.

3.4 Global Bound
If we inject Eq. 14 into Eq. 8, skipping the intermediate results, we
obtain a global bound I𝑎𝑝𝑝 defined as

I𝑎𝑝𝑝 (X) = max
𝑁Z≥𝑁X

(ℎ(𝑁Z)) (15)

with ℎ(𝑁Z) = log (𝑁Z) +
𝑐0 −

(∑
𝑦 xlogx(𝑛𝑦 + 𝑁Z 𝛼)

)
+ 𝑁Z 𝑁𝑌 xlogx(𝛼)

𝑛 + 𝑁Z 𝑁𝑌 𝛼
,

and where 𝑐0 is a constant equal to

𝑐0 =

(∑
x,𝑦

xlogx(𝑛x,𝑦 + 𝛼)
)
− 𝑁X 𝑁𝑌 xlogx(𝛼) .

Details of the derivation are given in Appendix 6.2.2. Expression 15
only depends on a single scalar, i.e. sum𝑁Z =

∑
x 𝑁

x
Z , and not on the

whole vector of variables 𝑁 x
Z . Bound I𝑎𝑝𝑝 (X) is thus the maximum

value of function 𝑁Z ↦→ ℎ(𝑁Z). Since 𝑑2ℎ
𝑑𝑁 2

Z
< 0, this function

ℎ is concave so it has a unique maximum, which is necessarily
I𝑎𝑝𝑝 (X). While this maximum has no simple analytic expression,
𝑑ℎ
𝑑𝑁Z

and 𝑑2ℎ
𝑑𝑁 2

Z
have simple expressions so that the Newton-Raphson

algorithm can give a very accurate value for I𝑎𝑝𝑝 (X) very quickly
in only few iterations.

3.5 Implementation
To find a solution to Problem 1, i.e. to compute the top-K SMI
dependencies, we implemented in C++ a branch-and-bound algo-
rithm based on I𝑎𝑝𝑝 (X). Although the branch-and-bound scheme
is relatively standard, we provide some additional details on how
we significantly optimized our implementation. First the crucial
computationally intensive step is the extraction of counts 𝑛x,𝑦 from
data samples, as we need these for every current pattern X score
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Ĩ(𝛼) (X;𝑌 ) and bound I𝑎𝑝𝑝 (X). To do so efficiently we use the HFP-
Growth algorithm [14] which relies on FP-trees [8] to compute the
counts of contingency tables. For fair comparison we implement
both our own scores, as well as the competitors we will compare
to in the experiments based on these data structures. Second, ex-
pressions of score Ĩ(𝛼) (X;𝑌 ) and bound I𝑎𝑝𝑝 (X) can be written as
functions of sums

∑
x,𝑦 xlogx(𝑛x,𝑦 + 𝛼) and

∑
x xlogx(𝑛x + 𝑁𝑌 𝛼),

which are the only terms depending on counts 𝑛x and 𝑛x,𝑦 . These
sums can directly be updated within the loops computing the inter-
section of partitions P(X ∪ {𝑌 }) = P(X) ∩ P(𝑌 ) so that it almost
costs no additional memory and time. Then iterations of Newton-
Raphson to compute I𝑎𝑝𝑝 (X) only depend on previously computed
constants, without requiring to access the FP-tree. The result is
thus immediate.

3.6 Problem complexity
In Sec. 3.3 we already gave an indication why Problem 3 is NP-hard:
the only place in the derivation of bound I𝑎𝑝𝑝 (X) where optimality
is broken is when applying the min inequality of Eq. 10 at Eq. 11.
One can therefore wonder when this inequality becomes an equality,
that is, when the bound �̃� (𝛼,x)

𝑎𝑝𝑝 (𝑁 ) becomes equal to optimal bound

�̃�
(𝛼,x)
𝑜𝑝𝑡 (𝑁 ). We answer this question with the following theorem.

Theorem 3.1. Bound �̃� (𝛼,x)
𝑎𝑝𝑝 (𝑁 ) is optimal, equal to �̃�

(𝛼,x)
𝑜𝑝𝑡 (𝑁 ),

if and only if there exists a 𝑁 -partition (P𝑧)1≤𝑧≤𝑁 of counts (𝑛x,𝑦)
such that the 𝑁 sums

∑
𝑛x,𝑦 ∈P𝑧 𝑛x,𝑦 are all equal.

We postpone the proof to Appendix 6.2.3. We can now use this
theorem to give a polynomial time reduction of the NP-complete
partition problem to Problem 3.

Theorem 3.2. Problem 3 is NP-hard.

We postpone the proof to Appendix 6.2.4.

4 EXPERIMENTS
In this section we evaluate SMI and the search algorithm that we
proposed above. The first question we aim to answer is whether
smoothed mutual information identifies statistically reliable depen-
dencies. The second question we consider is whether it is feasible
to use SMI to discover top-K dependencies from real world data.

4.1 Dependency Discovery
To allow evaluation with known ground truth where we have con-
trol over the difficulty over the task, we consider synthetic data
in this experiment. In particular, we consider a simple Bayesian
network, where features of X are all independent and where target
variable 𝑌 depends only on a subset of parent features. We will
use this data to evaluate whether the different methods are able to
recover all parents of 𝑌 without including any unrelated variables
𝑋 , for different numbers of parent variables and samples.

To this end, we generate synthetic data in the following way.
We consider a generative model whose descriptive features are
made of 10 independent random variables 𝑋𝑘 and a target vari-
able 𝑌 . All variables have a domain size of 4. Only 𝑋1, . . . , 𝑋𝑃 are
actual parents of the target variable 𝑌 , all others features being
independent with 𝑌 . In the following, we consider values 1, 3

and 5 for 𝑃 to cover the cases of low, medium and high dimen-
sional dependencies relatively to the total number of features. We
can straightforwardly sample a model with 𝑃 dependent variables
𝑋 by uniformly sampling from the joint probability distribution
𝑃 (𝑌,X) = 𝑃 (𝑌 |𝑋1, . . . , 𝑋𝑃 ) ×

∏10
𝑘=1 𝑃 (𝑋𝑘 ). Out of all models, we

only consider those whose fraction of information 𝐹 (X, 𝑌 ) = I(𝑋 ;𝑌 )
H(𝑌 )

is within the interval [0.2, 0.3], as to ensure there does exist a true
dependency between 𝑌 and its parents, without it being so strong
that discovery becomes trivial. For every value of 𝑃 we consider
different sample sizes 𝑛, distributed on a log scale from 10 to 10 000.
For each value, we sample 20 models of type 𝑃 , which results in 20
joint distributions denoted 𝑝 (𝑖)𝑖=1,...,20, and for each such model, we
then sample 100 datasets D(𝑖)

𝑛,𝑗 of size 𝑛. That is, every point (𝑃, 𝑛)
we report is an average over 2 000 datasets.

As here we are interested in evaluating the quality of each esti-
mator 𝜏 , we determine the top-1 maximizer X∗

𝑖, 𝑗,𝑛,𝜏 for each dataset
D(𝑖)
𝑛,𝑗 . As our evaluation metric in this experiment we use the nor-

malized intersection between the ground truth and the discov-
ered set. Formally, it is defined as

I (𝑃,𝑛) (𝜏) = E
( |X∗

𝑖 ∩ X∗
𝑖, 𝑗,𝑛,𝜏 |

max{|X∗
𝑖 |, |X∗

𝑖, 𝑗,𝑛,𝜏 |}

)
,

where X∗
𝑖 represents the true maximizer of model 𝑝 (𝑖) and the

expected value is with respect to 𝑖 ∈ [1, 20] and 𝑗 ∈ [1, 100]. We
also consider precision P and recall R, which are defined as

P (𝑃,𝑛) (𝜏) = E
( |X∗

𝑖 ∩ X∗
𝑖, 𝑗,𝑛,𝜏 |

|X∗
𝑖, 𝑗,𝑛,𝜏 |

)
and R (𝑃,𝑛) (𝜏) = E

( |X∗
𝑖 ∩ X∗

𝑖, 𝑗,𝑛,𝜏 |
|X∗
𝑖 |

)
.

Low values of precision (resp. recall) expresses the tendency of an
estimator to “overfit”, i.e. to include variables independent with 𝑌
(resp. to “underfit”, i.e. to miss parent variables of 𝑌 ).

In addition to our SMI estimator Ĩ(𝛼) , we consider three com-
petitors. The one proposed by Vinh et al. [12], which we denote as
𝐼𝜒,𝛼 , estimates mutual information by substracting from the plugin
estimator a corrective term based on a 𝜒2 statistical test

𝐼𝜒,𝛼 (X;𝑌 ) = 𝐼 (X;𝑌 ) − 1
2𝑛 𝜒𝛼,𝑙 (X,𝑌 ) , (16)

where 𝜒𝛼,𝑙 (X,𝑌 ) is the critical value corresponding to a significance
level 1−𝛼 and degrees of freedom 𝑙 (X, 𝑌 ) = (∏𝑋 ∈X 𝑁𝑋 −1) (𝑁𝑌 −1)
in 𝜒2 test. Here, 𝛼 can be thought as a parameter regulating the
amount of penalty. The second, proposed by Mandros et al. [10]
is the reliable fraction of information (RFI). It estimates mutual
information as

𝐼0 (X;𝑌 ) = 𝐼 (X;𝑌 ) − �̂�0 (X, 𝑌 , 𝑛) ,
where �̂�0 (X, 𝑌 , 𝑛) is the expected value of 𝐼 (X, 𝑌 ) with respect to
the uniform distribution over all 𝑛-permutations of the 𝑛 𝑌 -value
samples (see Mandros et al. [10] for the exact definition). Finally we
also evaluate to which extent the score of Suzuki [19] could address
our problem, while it has been introduced in the slightly different
context of Bayesian network structure extraction. This estimator
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includes a correction based on the Minimum Description Length
(MDL) principle. It is defined as

𝐼𝑆 (X;𝑌 ) = 𝐼 (X;𝑌 ) −
(𝑁X − 1) (𝑁𝑌 − 1)

2𝑛 log(𝑛) . (17)

We consider three different pseudocounts 𝛼 , i.e. 0.5, 1, and 2
to parameterize Ĩ(𝛼) , and use probability level 𝑝 = 0.95 for 𝐼𝜒,𝑝 .2
Overall, we hence consider six estimators: three variants of SMI,
namely Ĩ(0.5) , Ĩ(1) , and Ĩ(2) , and three competitors, 𝐼𝜒,95, 𝐼0, and 𝐼𝑆 .

We present the results for small, medium, and high dimensional
dependencies as Fig. 3, Fig. 4 resp. Fig. 5. From the figures we see
that 𝐼𝑆 is clearly not adapted to our problem as it serously underfits
for medium and large dependencies. The remaining scores can then
be divided in two groups: on one side, 𝐼0 and 𝐼𝜒,95 perform well for
high dimensional dependencies (i.e 𝑃 = 5 on Fig. 5), of which 𝐼0
outperforms 𝐼𝜒,95. However, as the precision curve of Fig. 3 shows,
both strongly “overfit” for smaller dependencies. Paradoxically,
both scores perform worse for higher sample sizes—which is rather
counter-intuitive as a larger number of samples should lead to a bet-
ter estimation. The reason we find for this is that the regularization
effect of these estimators disappears too early as 𝑛 grows, so that
their respective maximizer picks up more and more independent
variables just by chance. This effect is only observable on small or
medium sized models as for large models, the maximizer is close to
the whole set of variables. We note that in practice, this is unlikely
to be the case—if all our data would be dependent, chances are high
we would already have discovered this by hand.

In the more interesting and practical domain of discovering
lower order dependencies from large sets of variables, SMI performs
very well. While the regularization effect of Laplace smoothing
makes SMI a conservative estimator that requires a larger number
of samples to learn large models, it is the only estimator whose
performance continuously grows with 𝑛 for all settings, but for
overly small values of 𝛼 , like 𝛼 = 0.5.

Overall, SMI is the only estimator that performs robustly in every
setting of this experiment; on lower order dependencies it wins by a
clear margin and is the only that behaves like it should, on medium
dependencies it performs on par with the state of the art, while
in the experiment considering higher order dependencies—which
inherently favours scores that tend to overfit—it achieves excellent
precision and recall better than those of 𝐼𝜒,95.

4.2 Computational Efficiency
Next, we study the computational efficiency of SMI and its competi-
tors on real data. To make sure that we fairly compare scores and
bound efficiencies rather than the quality of their implementation,
we implemented all scores in the same optimized branch-and-bound
framework described in Sec. 3.5. To obtain upper bounds of scores
𝐼𝜒,𝛼 and 𝐼𝑆 , we replace term 𝐼 (X;𝑌 ) with H(𝑌 ) in Eq. 16 and Eq. 17.
For 𝐼0, we use the improved bound proposed by Mandros et al. [11].
To allow for easy comparison, we evaluate on the same datasets
used and further described by Mandros et al. [10], reporting on all
those that take more than 10 seconds for at least one of the scores.

2In addition we considered 𝑝 = 0.99, but as we found this provides results highly
similar to those for 𝑝 = 0.95 we omit these for succinctness.

Dataset 𝐼0 𝐼𝜒,95 𝐼𝑆 Ĩ(0.5) Ĩ(1) Ĩ(2) Ĩ(5)

lymphography 16 6 1 2 1 1 1
german 19 13 1 4 3 2 2
segment 28 34 1 2 1 1 1
sonar 123 53 2 28 15 5 2
penbased 129 66 1 3 3 3 1
wdbc 143 176 2 121 47 17 3
vehicle 154 24 1 3 2 1 1
twonorm 273 372 4 90 25 24 5
satimage 928 68 3 50 11 6 1
ionosphere 939 154 1 66 28 13 3
ring 1028 99 4 68 37 20 9
spectfheart 1178 249 3 180 116 66 15
texture 3423 173 1 13 7 6 1
splice > 1h > 1h 142 > 1h > 1h 2238 499
optdigits > 1h > 1h 229 > 1h > 1h > 1h 109
average 372.5 50.0 0.9 16.6 8.4 5.6 1.0

Table 3: Processing times (in sec.) tomine top-100 dependen-
cies for different scores and datasets. Last row gives for each
estimator, the average processing time ratio relatively to Ĩ(5) .

We give the wall-clock run times in Tab. 3. We make the code and
all data available for reproducibility.3

We see that SMI is up to two orders of magnitude faster than the
slowest competitor, RFI. The higher we set alpha, the faster SMI is,
which is explained by the fact that it will need increasingly strong
evidence to consider higher cardinality sets in the search lattice. As
we saw in the previous experiment, 𝐼𝑆 penalizes so strongly that it
effectively always disregards most of the search space.

5 CONCLUSION
We considered uniform priors to counter the inflated estimates dur-
ing the high dimensional optimization of mutual information for re-
liable functional dependency discovery. For the resulting smoothed
mutual information estimator (SMI), we provided both theoretical
justifications and showed important properties. In addition, we
derived a tight and admissible bounding function for SMI to be
used for pruning, leading to an effective branch-and-bound algo-
rithm for the hard problem of finding the top-𝑘 dependencies. Our
evaluation showed that the resulting method can very efficiently
discover sparse and informative dependencies, allowing for data
analysis on bigger data than previous proposals.

Our approach to reliable dependency discovery via smoothing
can be further explored with different smoothing techniques, e.g.,
Good-Turing. In addition, a tighter bounding function can be de-
rived for more effective search, while a greedy algorithm with
performance guarantees would allow access to even bigger data.

3https://github.com/P-Fred/Smoothie
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Figure 3: Normalized intersection (left), precision (middle) and recall (right) for low dimensional dependencies (𝑃 = 1).
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Figure 4: Normalized intersection (left), precision (middle) and recall (right) for medium dimensional dependencies (𝑃 = 3).

10 10
0

1,0
00

10
,0
00

0.00
0.20
0.40
0.60
0.80
1.00

data size 𝑛

10 10
0

1,0
00

10
,0
00

0.00
0.20
0.40
0.60
0.80
1.00

data size 𝑛
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Figure 5: Normalized intersection (left), precision (middle) and recall (right) for high dimensional dependencies (𝑃 = 5).
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6 APPENDIX
6.1 Reproducibility
The C++ source code that implements the branch-and-bound scheme
for SMI and all aforementioned scoring functions along with all
datasets are downloadable fromhttps://github.com/P-Fred/Smoothie.
See the README file for compilation and usage instructions

6.1.1 Experiment on quality of top-1 dependency (Sec. 4.1). The
experimental procedure is detailed below:

Given a set of estimators, a number 𝑃 ≤ 10 of parents and a set
of numbers of samples, we do the following for each number 𝑛 of
samples:

(1) We generate 20 models as follows:
(a) We consider 10 features 𝑋1 to 𝑋10 and we choose features

𝑋1 to 𝑋𝑃 as the parent variables of 𝑌 .
(b) Then for each tuple x𝑃 = (𝑥1, . . . , 𝑥𝑃 ) of values of X𝑃 =

{𝑋1, . . . , 𝑋𝑃 }, we draw uniformly a sample distribution
𝑃 (𝑌 |X𝑃 = x𝑝 ) on the 3-simplex thanks to a symmetric
Dirichlet distribution Dir(1) of order 𝑁𝑌 = 4.

(c) We reject the model while mutual information I(X;𝑌 ) is
outside the interval [0.2, 0.4].

(d) Then for each feature 𝑋𝑘 for 1 ≤ 𝑘 ≤ 10, we draw
uniformly a sample distribution 𝑃 (𝑋𝑘 ) on the 3-simplex
thanks to a symmetric Dirichlet distribution Dir(1) of
order 𝑁𝑋𝐾 = 4.

(e) Given each model, we sample 100 datasets of size 𝑛 apply-
ing ancestral sampling on the joint distribution:

𝑃 (𝑌,X) = 𝑃 (𝑌 |𝑋1, . . . , 𝑋𝑃 ) ×
10∏
𝑘=1

𝑃 (𝑋𝑘 )

(2) For each of the 20 × 100 generated datasets and for each
estimator 𝜏 , we find the top-1 dependency X∗

𝑖, 𝑗,𝑛,𝜏 → 𝑌

using our implementation and we compute its normalized
intersection, precision and recall, taking X∗

𝑖 = {𝑋1, . . . , 𝑋𝑃 }
as the true maximizer.

(3) We compute the average scores I (𝑃,𝑛) (𝜏), P (𝑃,𝑛) (𝜏) and
R (𝑃,𝑛) (𝜏) for each estimator 𝜏 over all 20 × 100 datasets.

6.1.2 Experiment on computational efficiency (Sec. 4.2). All tests
have been run on Intel i7-8700 CPU (3.20GHz) with 16GB RAM.
Bounds used for the different estimators are given below:

• For the smoothed mutual information (SMI), the bound given
in Sec. 3.4 of the present article.

• For the reliable fraction of information (RFI), we use the im-
proved bound given in Mandros et al [11].

• For the adjusted fraction of information proposed by Vinh et
al. [12], the bound is

𝐼𝜒,𝛼 (X;𝑌 ) = 𝐻 (𝑌 ) − 1
2𝑛 𝜒𝛼,𝑙 (X,𝑌 ) .

• For the MDL score proposed by Suzuki [20], the bound is

𝐼𝑆 (X;𝑌 ) = 𝐻 (𝑌 ) − (𝑁X − 1) (𝑁𝑌 − 1)
2𝑛 log(𝑛) .

We limited the processing time of each run to one hour. We ignored
datasets for which processing times for all estimators were all less
than 10 seconds or all more than one hour.

6.2 Proofs
6.2.1 Proof of Property 3.

Proof. Suppose𝑊 has the minimal possible entropy H̃(𝛼) (𝑊 )
with at least two different observed values, say 𝑎 and 𝑏, with a
respective number of observations 𝑛𝑎 ≥ 1 and 𝑛𝑏 ≥ 1. Let𝑊 ∗
be the admissible variable that has the same observations as𝑊
but 𝑎 is observed 𝑛𝑎 + 𝑛𝑏 times whereas 𝑏 is not observed. One
next proves the contradiction H̃(𝛼) (𝑊 ∗) < H̃(𝛼) (𝑊 ) that will
conclude the proof. To this end, Δ is introduced as the difference
(𝑛 + 𝑁𝑊 𝛼)

(
H̃(𝛼) (𝑊 ) − H̃(𝛼) (𝑊 ∗)

)
in order to show Δ > 0:

Δ = xlogx(𝛼) + xlogx(𝑛𝑎 + 𝑛𝑏 + 𝛼)
− xlogx(𝑛𝑎 + 𝛼) − xlogx(𝑛𝑏 + 𝛼)

= 𝑓 (𝑛𝑎 + 𝛼) − 𝑓 (𝛼) ,
with

𝑓 : 𝑥 > 0 ↦→ xlogx(𝑥 + 𝑛𝑏 ) − xlogx(𝑥) .
But

𝑑 𝑓

𝑑𝑥
(𝑥) = log

(
1 + 𝑛𝑏

𝑥

)
> 0 .

Therefore 𝑓 is a increasing function, and since 𝑛𝑎 > 0, 𝑓 (𝛼) <

𝑓 (𝑛𝑎 + 𝛼), Δ > 0. □

6.2.2 Derivation of global bound expression 15 in Sec. 3.4 .

Proof. According to Eq. 8 and given a local admissible bound
�̃�

(𝛼,x)
𝑎𝑝𝑝 we can obtain a global admissible bound as

I𝑎𝑝𝑝 (X) = max
(𝑁 x

Z )
(
ℎ

((𝑁 x
Z)

) )
with

ℎ
((𝑁 x

Z)
)
= H̃(𝑁Z 𝛼) (𝑌 ) −

∑
x

𝑛x + 𝑁 x
Z 𝑁𝑌 𝛼

𝑛 + 𝑁Z 𝑁𝑌 𝛼
�̃�

(𝛼,x)
𝑎𝑝𝑝 (𝑁 x

Z) .

where 𝑁Z =
∑
x 𝑁

x
Z . Inserting expression of �̃� (𝛼,x)

𝑎𝑝𝑝 given by Eq. 14,
we get

ℎ
((𝑁 x

Z)
)
= H̃(𝑁Z 𝛼) (𝑌 ) −

∑
x

𝑁 x
Z xlogx

(
𝑛x
𝑁 x
Z
+ 𝑁𝑌 𝛼

)
𝑛 + 𝑁Z 𝑁𝑌 𝛼

+
∑
x

(∑
𝑦 xlogx(𝑛x,𝑦 + 𝛼)

)
+ (𝑁 x

Z − 1) 𝑁𝑌 xlogx(𝛼)
𝑛 + 𝑁Z 𝑁𝑌 𝛼

= log (𝑛 + 𝑁Z 𝑁𝑌 𝛼) −
∑
𝑦 xlogx(𝑛𝑦 + 𝑁Z 𝛼)
𝑛 + 𝑁Z 𝑁𝑌 𝛼

−
∑
x

𝑁 x
Z xlogx

(
𝑛x
𝑁 x
Z
+ 𝑁𝑌 𝛼

)
𝑛 + 𝑁Z 𝑁𝑌 𝛼

+

(∑
x,𝑦 xlogx(𝑛x,𝑦 + 𝛼)

)
+ ∑

x (𝑁 x
Z − 1) 𝑁𝑌 xlogx(𝛼)

𝑛 + 𝑁Z 𝑁𝑌 𝛼
.

Permuting terms of the latter expression, we regroup unknowns
(𝑁 x

Z) into what can be interpreted as the entropy of a virtual vari-
able Z′. This variable is such that ∀x, 𝑁 x

Z′ = 𝑁 x
Z and such that for
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each of its values z′, its count 𝑛z′ is 𝑛x
𝑁 x
Z
, where x is the restriction

of z′ on X (i.e. z′ ∈ DZ/x). This gives

ℎ
((𝑁 x

Z)
)
= log (𝑛 + 𝑁Z 𝑁𝑌 𝛼) −

∑
x

∑
z∈DZ/x

xlogx
(
𝑛x
𝑁 x
Z
+ 𝑁𝑌 𝛼

)
𝑛 + 𝑁Z 𝑁𝑌 𝛼

−
∑
𝑦 xlogx(𝑛𝑦 + 𝑁Z 𝛼)
𝑛 + 𝑁Z 𝑁𝑌 𝛼

+

(∑
x,𝑦 xlogx(𝑛x,𝑦 + 𝛼)

)
+ (𝑁Z − 𝑁X) 𝑁𝑌 xlogx(𝛼)

𝑛 + 𝑁Z 𝑁𝑌 𝛼

= H̃(𝑁Y 𝛼) (Z′)

+

(
−∑

𝑦 xlogx(𝑛𝑦 + 𝑁Z 𝛼)
)
+ 𝑁Z 𝑁𝑌 xlogx(𝛼) + 𝑐0

𝑛 + 𝑁Z 𝑁𝑌 𝛼
,

grouping terms independent of Z into a constant

𝑐0 =

(∑
x,𝑦

xlogx(𝑛x,𝑦 + 𝛼)
)
− 𝑁X 𝑁𝑌 xlogx(𝛼) .

Using the fact H̃(𝑁𝑌 𝛼) (Z′) ≤ log(𝑁Z), we get Expr. 15 provided in
Sec. 3.4. We note that a tighter bound can be obtained by finding
the maximal value of H̃(𝑁𝑌 𝛼) (Z′) reachable under the constraints
induced by counts 𝑛x. However the gain is so small in practice that
we choose the slightly coarser bound log(𝑁Z) instead. □

6.2.3 Proof of Theorem 3.1. Before proving Theorem 3.1, one re-
calls the following property:

Property 4. Given two real functions 𝑓 and 𝑔 defined on the

same compact set 𝑆 , let be w𝑜𝑝𝑡 ∈ argminw∈𝑆 (𝑓 (w) − 𝑔(w)), 𝑓 =
minw∈𝑆 (𝑓 (w)) and 𝑔 = maxw∈𝑆 (𝑔(w)). Then
min
w∈𝑆

(𝑓 (w) − 𝑔(w)) = 𝑓 − 𝑔 ⇔ 𝑓 (w𝑜𝑝𝑡 ) = 𝑓 and 𝑔(w𝑜𝑝𝑡 ) = 𝑔 .

Proof. (1)⇐ (2) is trivial. Then ifminw∈𝑆 (𝑓 (w)−𝑔(w)) = 𝑓 −𝑔,
necessarily 𝑓 (w𝑜𝑝𝑡 )− 𝑓 = 𝑔(w𝑜𝑝𝑡 )−𝑔. The left side of this equation
is nonnegative while the right side is nonpositive. Therefore both
sides are equal to zero, proving (1)⇒ (2). □

This property is used in the next proof of Theorem 3.1:

Proof. We first consider (1)⇒ (2). We reuse notations of Prop. 4
by taking w = (𝑛z,𝑦), 𝑆 as the finite (thus compact) intersection
of N𝑁 with the 𝑁𝑌 plane constraints ∀𝑦, ∑𝑛z,𝑦 = 𝑛x,𝑦 , functions
𝑓 (w) = H̃(𝛼) (Z|𝑌,X = x) and 𝑔(w) = H̃(𝑁𝑌 𝛼) (Z|X = x) and
w𝑜𝑝𝑡 ∈ argminw∈𝑆 (𝑓 (w) − 𝑔(w)) some optimal set of counts.
Then according to equations 9 and 11,

�̃�
(𝛼,x)
𝑜𝑝𝑡 (𝑁 ) = H̃(𝑁 𝛼) (𝑌 |X = x) +min

w∈𝑆
(𝑓 (w) − 𝑔(w))

�̃�
(𝛼,x)
𝑎𝑝𝑝 (𝑁 ) = H̃(𝑁 𝛼) (𝑌 |X = x) + 𝑓 − 𝑔 .

Hypothesis �̃� (𝛼,x)
𝑎𝑝𝑝 (𝑁 ) = �̃� (𝛼,x)

𝑜𝑝𝑡 (𝑁 ) thus implies minw∈𝑆 (𝑓 (w) −
𝑔(w)) = 𝑓 − 𝑔. Property 4 thus applies so that 𝑓 (w𝑜𝑝𝑡 ) = 𝑓 and
𝑔(w𝑜𝑝𝑡 ) = 𝑔.

Statement 𝑓 (w𝑜𝑝𝑡 ) = 𝑓 means for all 𝑦, H̃(𝛼) (Z|𝑌 = 𝑦,X =

x) = ℎ̃ (𝛼)𝑁 (𝑛x,𝑦). This implies according to Prop. 3 that the optimal
contingency table of w𝑜𝑝𝑡 has only one non-empty cell with count
𝑛x,𝑦 on each row mapped to value 𝑦, as illustrated by tables on
Fig. 2. Thus, counts 𝑛x,𝑦 are never spread on multiple cells.

Statement 𝑔(w𝑜𝑝𝑡 ) = 𝑔 means H̃(𝑁𝑌 𝛼) (Z|X = x) = log(𝑁 ).
This is only possible if 𝑃 (Z|X = x) is uniform so that

∀z, 𝑛z =
∑
𝑦

𝑛z,𝑦 =
𝑛x
𝑁

.

But counts 𝑛z,𝑦 are either equal to some count 𝑛x,𝑦 or 0. Thus the
𝑁 columns of the contingency table induce a partition of (𝑛x,𝑦)
whose sums are all equal, as illustrated by table of Fig. 1c.

Conversely, for (2) ⇒ (1), if counts (𝑛x,𝑦) can be partitioned
in 𝑁 sets (P𝑧)1≤𝑧≤𝑁 of equal sums, these counts (𝑛x,𝑦) can be
arranged in a 𝑁𝑌 × 𝑁 contingency table so that if count 𝑛x,𝑦 is
part of 𝑃𝑧 then it is put in cell of coordinate (𝑦, 𝑧). This way, every
row has one and only one non-empty cell and sums of counts
on every column are all equal. These are sufficient conditions for
the entropy H̃(𝛼) (𝑌 |Z,X = x) to be equal to �̃� (𝛼,x)

𝑎𝑝𝑝 (𝑁 ), proving
�̃�

(𝛼,x)
𝑜𝑝𝑡 (𝑁 ) ≥ �̃�

(𝛼,x)
𝑎𝑝𝑝 (𝑁 ) and thus the equality. □

6.2.4 Proof of Theorem 3.2.

Proof. The NP-complete partition problem is defined as follows:
Given a set (𝑥𝑖 )1≤𝑖≤𝑚 of positive integers and a number 𝑘 , decide
whether there exists a 𝑘-partition (P𝑗 )1≤ 𝑗≤𝑘 of indexes {1..𝑚} such
that all sums 𝑆 𝑗 =

∑
𝑖∈P𝑗 𝑥𝑖 for 𝑗 ∈ {1..𝑘} are equal. Such problem

instance ca be mapped to an instance I of Problem 3: take 𝛼 = 1,
𝑁𝑌 =𝑚, and ∀𝑦 ∈ {1..𝑚}, 𝑛x,𝑦 = 𝑥𝑦 . In addition, Eq. 14 allows to
compute �̃� (𝛼,x)

𝑎𝑝𝑝 (𝑁 ) in polynomial time. Then after solving I and
according to Theorem 3.1, there exists a partition of equal sums if
and only if the returned solution �̃� (𝛼,x)

𝑜𝑝𝑡 (𝑁 ) is equal to �̃� (𝛼,x)
𝑎𝑝𝑝 (𝑁 ).

The certificate is provided by the contingency table (𝑛z,𝑦). The
NP-complete partition problem is thus polynomial-time reducible
to Problem 3. □
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