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Abstract. We study the problem of discovering robustly connected sub-
graphs that have simple descriptions. That is, our aim is to discover sets
of nodes for which the induced subgraph is not only difficult to fragment
into disconnected components, but for which the nodes can also be se-
lected from the entire graph with just a simple conjunctive query on the
vertex attributes. As many subgraphs do not have such a simple logical
description, first mining robust subgraphs and then post-hoc discovering
their description leads to sub-optimal results. Instead, we propose to op-
timise over describable subgraphs only. To do so efficiently we propose
a non-redundant iterative deepening approach, which we equip with a
linear-time tight optimistic estimator that allows us to prune large parts
of the search space. Through extensive empirical evaluation we show that
our method can consider large real-world graphs, and discovers not only
easily interpretable but also meaningful subgraphs.

1 Introduction

Graphs provide a natural way to represent relationships between entities. We find
graphs all around us, ranging from power grids, social networks, up to relational
databases. With the ubiquity of the graph data model, mining graphs has seen
ample research attention from the data mining community. A large part of this
work has been focused on discovering dense subgraphs—where dense is typically
defined as a high edge–to–vertex ratio. In this task, the main premise was that
these represent vertices that ‘belong together’ and are therefore worth knowing.

In this paper we break with this premise. We argue that from a knowledge
discovery viewpoint subgraphs whose vertices are arbitrarily chosen to maximise
this score are not only difficult to interpret, but possibly not even interesting
to begin with. After all, by selecting vertices at will there is no guarantee that
there exists a reasonable explanation why these nodes belong together. Instead,
we consider only subgraphs whose vertices we can select out of the entire graph
with a conjunctive query on the vertex attributes. By admitting such a sim-
ple description, the subgraphs we discover are easily interpretable: from IMDB
data, for example, we discover that mainstream movie crew with over 15 years
experience have collaborated together more than is usual in the movie industry.

Moreover, we depart from the notion that subgraphs with high edge to vertex
ratios are interesting per se. Despite its appeal at first glance, it is a rather näıve



(a) complete bipartite
graph

edge/vertex ratio:
3.2—coreness: 4.

(b) 6-regular graph (also
a 6-core)

edge/vertex ratio:
3—coreness: 6.

Fig. 1 [Edge/vertex–ratio
vs. robust connectedness]:
Although graph (a) is more
densely connected than (b),
graph (b) is much more
robustly connected than (a):
While we can make (a) fully
disconnected by removing
just its 4 central nodes, to
achieve the same for (b) we
need to remove 19 vertices.

a measure of whether vertices ‘belong together’, as it only considers numbers
of edges rather than their structure. As an example, consider Fig. 1 where we
depict two toy graphs of 20 vertices each. The graph on the left has a high edge
to vertex ratio, but is arguably not very robustly dense; that is, we can fully
disconnect it by only removing the 4 central nodes. In contrast, the graph on
the right has a lower edge to vertex ratio, but is robustly dense: to disconnect
it, we would have to remove 19 vertices. That is, while the leftmost graph is not
uninteresting per se, the rightmost graph depicts an interesting phenomenon
that when focusing on edge statistics alone we would miss.

We hence study the problem of discovering robustly connected subgraphs that
admit simple descriptions. We propose a score for robustness of subgraphs based
on the notion of k-coreness. We then aim to discovery those subgraphs that are
not only simply describable, but are (much) more robustly densely connected
than the remainder of the graph. Unlike the description-agnostic setup, this in-
curs a hard combinatorial optimization problem for which the post-hoc approach
of first mining robust subgraphs and then searching for descriptions fails miser-
ably in practice. Therefore, to mine large attributed graphs in reasonable time
with guarantees, we propose a tight optimistic estimator and a non-redundant
variant of branch-and-bound search. Through extensive experiments on ten large
and diverse real-world graphs we show that our method, RoSi, performs very
well in practice, discovering meaningful subgraphs where more naive strategies
run out of time and memory. Importantly, these experiments also show that the
above toy example is not esoteric: among the densest subgraphs that the recent
method by Galbrun et al. [13] discovers on the DBLP dataset is a graph with
average density of 42, but a robustness of 0 (!).

The roadmap of this paper is as follows. Next, we discuss how we can measure
the robustness of a subgraph. In Sect. 3 we introduce our approach to efficiently
searching for robust subgraphs with simple descriptions. We discuss related work
in Sect. 4, and empirically evaluate RoSi in Sect. 5. Finally, we round up with
discussion and conclusions in Sect. 6.



In the interest of readability and space, we postpone the proofs to our claims
to the online appendix.1

2 Measuring Robust Connectedness

We study sets of entities, for which we are given attribute values as well as
structural information in the form of connections between them. Formally, we
consider vertex-attributed (multi-)graphs G = (V,E,X), where the vertices V
correspond to entities and the edges E to connections between them. The set
of vertex attributes X = {x1, . . . , xp} comprises assignments xi : V → Xi from
vertices to a continuous or categorical domain Xi. These attributes can be used
to simply describe subsets based on logical expressions of vertices v ∈ V like
σ(v) ≡ [age(v) ≥ 18] ∧ [sex(v) = ‘female’].

Our goal is to identify such logically described sets of vertices U ⊆ V that
are relatively large but also more robustly connected than G as a whole. That
is, we aim to identify significant parts of the graph that stand out due to their
connectedness. Note that size and connectedness are inversely related: while it is
easy to construct a small U with highly connected vertices, a large U must also
include loosely connected ones. We hence maximise their multiplicative trade-off,
inspired by the impact concept in mechanics, which we refer to as the density
impact function. This score takes the form of the weighted geometric mean

fκ(U ; γ) = fc(U)
(1−γ)

fd(U)
γ

with γ ∈ (0, 1) , (1)

where γ is a trade-off parameter that tunes the importance between the
coverage term fc(U) = |U |/|V |, i.e., the portion of the graph covered by the
subset U , and the density term fd(U), which increases as the vertices in U
become more robustly connected. We proceed to give a precise definition of the
density term based on the concept of k-cores [7].

2.1 Core Decomposition: k-Cores, Degeneracy, and Coreness

We can formally measure how robustly connected an entity subset U ⊆ V is by
studying the connectivity of its induced subgraph, i.e., the subgraph G[U ] =
(U,E(U)), where E(U) = {(v, u) ∈ E | u, v ∈ U} is the set of all edges with
end-points in U . For a vertex v, we define by N(v) = {u ∈ V | (u, v) ∈ E} its
neighbours in G and its degree as the number of its neighbours δ(v) = |N(v)|.
We indicate that a quantity refers to the induced graph G[U ] by marking the
inducing vertex set as a subscript. For instance, δU (u) denotes the degree of
vertex u in the induced graph G[U ].

A k-core component of a graph G is an (inclusion-wise) maximal connected
subgraph of G whose vertices U have all a degree of at least δU (u) ≥ k. The

1https://eda.mmci.uni-saarland.de/rosi
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Fig. 3 [Higher coreness coin-
cides with higher density.]:
The core decomposition of
a graph hierarchically groups
its vertices into increasingly
denser subgraphs. Here H(k)
denotes a k-core and Hi(k)
the i-th k-core component.

subgraph that consists of all k-core components of this graph is called its k-
core H(k), and the k-core vertices V(k) are the vertices of the graph’s k-core.
Formally, we can write H(k) = G[V(k)], where the k-core vertices are

V(k) = {v ∈ V | v belongs to a k-core component} .

The annotated k-cores of the example graph on Fig. 3 show that the k-cores
are nested to form a hierarchy over the vertices. We also define the k-shell
of G as the set of vertices that lie in the k-core but not in the k + 1-core; in
the figure each k-shell consists of the same-coloured vertices. In this way, the
k-shells define a partitioning over the vertices, the core decomposition of G.
This decomposition assigns to each vertex v a core number (or coreness)

κ(v) = max {k | v ∈ V(k)} ,

equal to the greatest number k such that this vertex lies in the k-core of G. As
usual, the core number of an induced graph G[U ] is

κU(v) = max {k | v ∈ VU(k)} ,

where VU(k) are the k-core vertices of G[U ]. Note that by definition G[V ] = G,
and hence κV (v) = κ(v). Finally, the graph degeneracy

K = max
v∈V

κ(v) (2)

is the maximum coreness over all the vertices of the graph.
The coreness of a subgraph is closely related to different definitions of den-

sity [25,27]. Importantly, high coreness indicates high robustness, since the min-
imum core number in a subgraph bounds the number of edges that have to be
removed until the subgraph becomes disconnected. This property, also known as
k-edge connectedness [19, chap. 2.3], underlies our notion of robustness.

2.2 The Coreness Impact Function

We now use the relation between coreness and robust connectedness to define a
density term fd that quantifies this property for a (sub-)graph. We define the
average coreness of G to be the mean of the core values of its vertices

κ̄ =
1

|V |
∑
v∈V

κ(v) . (3)



As usual, computing the core values of this average on G[U ] gives

κ̄U =
1

|U |
∑
v∈U

κU(v) for U ⊆ V . (4)

We hence quantify the degree to which a vertex set U is more robustly con-
nected than G on average as the coreness density

fd(U) = κ̄U − κ̄ . (5)

This quantity assigns a density of fd(V ) = 0 to the full graph and is also intu-
itively interpretable as the extra average coreness of G[U ] compared to that of G.
Finally, we can now use Eq. (5) as our definition for the density term in Eq. (1).
In summary, we end up with the coreness impact of a vertex set defined as:

fκ(U ; γ) =

(
|U |
|V |

)1−γ (
κ̄U − κ̄

)γ
with γ ∈ (0, 1) . (6)

Note that this measure is related yet different from the one typically used
in rule mining (or subgroup discovery) for numerical unstructured data [28,14].
In this setting, a real-valued target attribute y is defined for each entity v, and
we aim to find a describable subset of V which maximises the difference in
mean of y within a subset U ⊆ V and the entire V . With this approach, one
can approximate the coreness impact function by using y(v) = κ(v), the vertex
coreness with respect to G. This yields a static version fsκ of Eq. (6), whose
average coreness κ̄U is now computed with respect to G. Formally, this quantity
is denoted as κ̄V (U), using an extension of Eq. (4) that further specifies the
vertex set T whose core values we average:

κ̄U(T ) =
1

|U |
∑
v∈T

κU(v) , for all T ⊆ U ⊆ V . (7)

Although this static measure fsκ can be optimised using existing techniques, it
systematically overestimates the subgraph density, as visualised in Fig. 4. This
happens because the average coreness of Eq. (7) is monotone with respect to the
inducing vertex set. This is a key observation to our analysis. Therefore we note:

Lemma 1. Let T be a subset of U . Then κ̄T (T ) ≤ κ̄U(T ).

3 Discovering Robust Subgraphs that Have Simple
Descriptions

Our goal is to identify large and robustly connected vertex sets which have a
simple description. Hence, in addition to the chosen optimisation function fκ we
need to fix a set of potential descriptions: the description language L.



H(5)
5-core

on dens.

Gl 0
G 4

on dens.

Gr 2
G 3

Gr = (Ur, Er)

Gl = (Ul, El)

Fig. 4: The average subgraph
coreness κ̄U = κ̄U(U) may
be misleadingly overestimated
when it is computed on the
whole graph κ̄V (U). Here, sub-
graph Gr is denser than Gl with
κ̄Ur = 2 > 0 = κ̄Ul . However,
counting the edges of G, the
subgraph densities falsely indi-
cate the opposite relation.

A common way to define such a language is by considering all conjunctions
π1 ∧ ... ∧ πl that can be formed from a set of base predicates Π on vertex
attributes, e.g., [age > 18] or [sex = ‘male’], that are either given, or in case
of ordinal or numeric features, automatically discovered during mining [29]. We
refer to such a conjunction as a selector σ and to the vertices that satisfy it as
the extension of σ, denoted ext(σ) ⊆ V . We define the value of a selector
fκ(σ) = fκ(ext(σ)) to be the objective value of its extension. With this our
formal problem specification becomes: find within the language a selector σ∗

that attains the highest value

σ∗ ∈ arg max
σ∈L

f(σ) . (8)

While greedy algorithms are readily available to solve this problem, our ob-
jective is neither anti-monotone nor sub-modular, and their solution can be ar-
bitrarily far from the optimal. An exact method, however, not only finds higher
quality results, but also allows to rule out the existence of robustly connected
subgraphs within L. This is particularly important for applications that require
definite information, e.g, scientific discovery [9]. In the next sections we develop
an efficient algorithm to solve problem (8) exactly.

3.1 Solving Exactly with Branch–and–Bound

The established algorithm that solves problem (8) exactly is Branch–and–Bound
(BnB) [21]. This algorithm is based on two components: a refinement operator
and an optimistic estimator.

A simple refinement operator ρ : L → 2L can be formulated by extending
a given selector with each unused predicate that respects a given lexicographic
ordering:

ρ(σ) = {σ ∧ πi | imax(σ) < i ≤ |Π|} , imax(σ) = max{i | πi ∈ σ} .

This operator induces a tree over L that has at its root the selector σroot: the
empty conjunction, whose extension is the entire V .



The second component of BnB—an admissible optimistic estimator f̂ of
an objective function f—is defined as

f̂(U) ≥ max
T⊆U

f(T ), ∀U ⊆ V . (9)

Naturally, the tighter the bound of the optimistic estimator the higher its pruning
potential. This potential becomes optimal when Eq. (9) holds with equality; then

we refer to f̂ as the tight optimistic estimator [15] of the objective function
f .

These components work as follows: the refinement operator defines a search
tree over the language L in a way that each child of a selector describes a subset
of its parent’s vertex set. At the same time, the optimistic estimator of a vertex
set V upper bounds the value of all possible subsets of V . These components are
then combined as follows: We start from the root and traverse the search tree,
while keeping track of the best selector value encountered so far. For each child
selector we evaluate the optimistic estimator; if this value is below the current
best, no descendant can improve on the current best, and the entire sub-branch
can be safely pruned.

Note that both the objective value and the optimistic estimator must be
computed once per iteration. In each iteration the creation of the next studied
refinement selector happens in (amortised) linear time. Therefore, to avoid that
the algorithm changes asymptotic complexity, we require the bound to also be
computable in O(n).

In summary, to apply BnB we need a) a refinement operator ρ, and b) an
optimistic estimator, ideally computable in O(n).

3.2 Optimistic Estimators

To derive optimistic estimators for the coreness impact function, we show that
they satisfy definition (9). Let U be any subset of V ; to get a first solution of
this definition we use Lemma 1 as follows.

max
T⊆U

fκ(T ) ≤ max
T⊆U

|T |
|V |

max
T⊆U

(κ̄T − κ̄) ≤ max
T⊆U

|T |
|V |

(
max
T⊆U

κ̄V (T )− κ̄
)

=
|U |
|V |

(
max
u∈T

κ(u)− κ̄
)
≤ |U |
|V |

(
max
u∈V

κ(u)− κ̄
)

=
|U |
|V |

(K − κ̄) ,

(10)

where the second inequality follows from Lemma 1, in the next equality we
maximise the average coreness of U by selecting the single vertex with the largest
core value, and in the last equality we use the definition of degeneracy given in
Eq. (2). Due to the monotonicity of a positive power, fκ(·, γ) can be bounded
similarly.

The optimistic estimator (10), however, maximises each term individually,
which gives a rather loose bound. A tighter one is given by the tight optimistic
estimator for fsκ (see Sec. 2.2): since fsκ computes its average coreness on G,
according to Lemma 1 it is an overestimation of fκ, i.e., fsκ(U) ≥ fκ(U). As



such, an optimistic estimator f̂sκ for fsκ is also admissible for our measure. Using

this tight optimistic estimator f̂sκ, adapted from [9], we get

max
T⊆U

fκ(T ) ≤ max
T∈U

fsκ(T ) = max
0<i≤|U |

i

|V |

[
1

i

i∑
j=1

κ(vj)− κ̄
]
, (11)

where v1, . . . , v|V | are the vertices of V ordered in decreasing core value. Once
again, this bound can be adjusted for fκ(·; γ).

However, both bounds (10) and (11) consider only the core values of the entire
graph, which we showed in Sec. 2.2 to overestimate the coreness of the induced
graph. Hence, we obtain a tighter bound than (10) by instead considering the
coreness in the induced graph.

max
T⊆U

fκ(T ) ≤ max
T⊆U

|T |
|V |

max
T⊆U

(κ̄T − κ̄) =
|T |
|V |

(κ̄T∗ − κ̄)

=
|T |
|V |

(KU − κ̄) with T ∗ = V(KU) ,

(12)

where KU is the degeneracy of G[U ] and T ∗ are the core vertices of the highest
k-core in G[U ], since they maximise κ̄T over T ⊆ U .

Next, we maximise both terms, fc and fd, jointly on the induced subgraph.
We show that the resulting estimator is tight for γ = 1/2 and generally tighter
than all of the above. Importantly, it is also computable in O(n). At the core of
this optimistic estimator lies a tight upper bound for the total coreness κU(U)
of Eq. (3) over all subsets of U , written as

κ∗U = max
T⊆U

κT (T ) = max
1≤i≤|U |

κiU ,

where we first maximise over subsets of U with a fixed cardinality i

κiU = max
T⊆U , |T |=i

κT (T ) . (13)

To compute bound (13) we first arrange all vertices v1, . . . , v|U | of U in order of
decreasing coreness, so that κU(vi) ≥ κU(vi+1) for all 1 ≤ i < |U |. This quantity
is itself upper bounded by the partial sums of the ordered core numbers:

κ̂iU =

i∑
j=1

κU(vj) .

We can analyse this sequence as follows. Due to their ordering, the vertices are
selected one k-shell of G[U ] at a time in decreasing order of k, so that within each
k-shell the value of κ̂iU increases by a constant k. This constant changes right
after each k-shell (or equivalently, k-core) is exhausted. There are KU + 1 such
complete core addition indices: each corresponds to exhausting the vertices
of a k-core and thus coincides with the size of a k-core

nk = |VU(k)| , 0 ≤ k ≤ KU + 1 .



Note that κ̂iU increases linearly between two consecutive complete core addi-
tion indices nk+1 ≤ i ≤ ni by exactly k. Thus, κ̂iU is a piece-wise linear sequence
in i, whose pieces switch at indices i = nk. The value of κ̂iU at each such index
can be computed as the cumulative sum of k-shell sizes, each weighted by k; the
remaining indices are computed using linear interpolation:

κ̂iU =


∑KU
λ=k λ(nλ − nλ+1)

i = nk
0 ≤ k ≤ KU

(i− nk+1)κ̂
nk
U + (nk − i)κ̂

nk+1
U

nk+1 − nk
nk+1 ≤ i < nk
0 ≤ k ≤ KU .

To simplify this, observe that κ̂nkU = κ̂
nk+1
U + k(nk − nk+1), so that

κ̂iU = (i− nk+1)k +

KU∑
λ=k

λ(nk − nk+1) , nk+1 ≤ i ≤ nk . (14)

This reformulation now makes it clear that the piece-wise linear sequence κ̂U is
increasing and concave (due to the monotonically decreasing increments k).

We can now use each element of the series κ̂iU as an upper bound for the
maximum total coreness κiU over all subsets of U with a fixed cardinality of i.

Proposition 1. For the piece-wise linear function of Eq. (14)

1. κiU ≤ κ̂iU , for all 0 ≤ i ≤ |U |
2. κiU = κ̂iU , for i ∈

{
0, n0, . . . , nKU

}
Using the first part of Proposition 1 we can upper bound the value of fsκ over

all subsets of U with cardinality i by the quantity

φ̂U (i; γ) =

(
i

|V |

)1−γ (
κ̂iU
i
− κ̄
)γ

. (15)

Hence, the solution of Eq. (9) for fκ(U ; γ) can be written as

max
T⊆U

fκ(T ; γ) ≤ φ̂∗U (γ) = max
0<i≤|U |

φ̂U (i; γ) . (16)

Finally, we replace (15) into the above equation and then use Proposition 1
(part 2) to show the tightness of our bound (16), as follows.

Corollary 1. The quantity φ̂∗U (γ) is an optimistic estimator of fκ(U ; γ). In

addition, φ̂∗U is tight in the special case of γ = 1/2.

φ̂∗U (γ) = max
0<i≤|U |

(
i

|V |

)1−γ (
κ̂iU
i
− κ̄
)γ

. (17)

As a concluding remark, our proposed bound (17) can be computed in linear
time: the core decomposition of a graph takes O(n) time [5], after which we

compute φ̂∗U as the maximum of the |U | ≤ |V | = n values in Eq. (17), each of
which needs O(1) time.



3.3 Discovering the Top-κ Subgraphs

We next describe Robustly–Connected Subgraphs with Descriptions (RoSi),
the complete algorithm that finds the top-κ subgraphs within the language L
that maximise the coreness impact function.

RoSi is an implementation of the iterative deepening depth first search variant
of BnB [18]. In particular, it repeatedly invokes a truncated (i.e., depth-limited)
depth first search (DFS) for an increasing depth limit until no search nodes are
reachable below the current depth limit. This algorithm constitutes a hybrid of
depth-first and breadth-first search; as such it combines the minimal memory
footprint of DFS while it avoids spending excessive time in few—possibly sub-
optimal—deep branches; this allows to discover shallow good solutions early.

If required, RoSi can terminate early by imposing a depth limit dmax <
∞, which intuitively corresponds to finding the optimal selector with at most
dmax predicates. Additionally, the optimality guarantee can be relaxed by setting
an approximation factor α ∈ (0, 1], so that the discovered solution is an α-
approximation of the exact optimum, where α = 1 yields the exact solution.

Note that the complexity of the inner for-loop is O(n); this includes comput-
ing the refinements, the measure, and its bound.

4 Related Work

We begin our review of related literature with methods that provide no descrip-
tions as we progressively compare to ones closer to our own.

Dense Subgraphs and Communities. The typical objective in dense subgraph
discovery is to find the subset of vertices in a non-attributed graph that induces
the subgraph with the highest edge-to-vertex ratio. A plethora of works rein-
terpret density to take into account structural information, for instance, high
triangle counts, measures based on large and/or dense k-cliques, quasi-cliques,
k-plexes, k-clubs, and k-cores [25], just to name a few. In the related yet different
community detection, we impose the additional constraint that the discovered
subgraph be disconnected with the rest of the graph, which usually incurs the
need for combinatorial optimisation. We direct the interested reader to a recent
survey [12]. RoSi adapts a k-core based measure to describing its patterns.

Cohesive Subgraphs. The work of [22] applies subspace clustering on the vertex
attributes to find maximal connected subgraphs that contain vertices with simi-
lar attributes, whose density surpasses a given threshold. Similarly, [16] (Gamer)
discover non-redundant sets of subgraphs, which must be connected γ-quasi-
cliques for a given parameter γ. Note that for both methods the respective den-
sity score needs only surpass a user-defined threshold and does not contribute to
the quality of each subgraph any further. More recently, [23] (AMEN) introduce
an attribute-aware variant of the established modularity measure [12] to detect
ego-net–shaped communities with similar attributes. These last three methods
score each mined pattern individually. In contrast, the subgraph clustering PICS
of [1] uses low entropy splits of the binary adjacency and attribute matrices to



form vertex clusters with similar concentration of edges and binary features. We
compare RoSi to both PICS and AMEN, the most recent of both cases.

Worth mentioning are also works which use graph attributes to assess sub-
graph interestingness [6] or to detect anomalies in them [8]. These methods,
however, do not provide any descriptions of the mined subgraphs, while also re-
quiring a model for the attributes. A more recent work [2] mines descriptions for
subgraphs with anomalously high edge weights (dyadic relations). Our problem
does consider the exceptionality of the attributes per se, which are used instead
to form descriptions.

Subgroup Discovery. Nevertheless, describing parts of the dataset which ex-
hibit exceptional behaviour of a target concept when compared to the entire
dataset defines the broad task of subgroup discovery, which also includes RoSi.
Such a target concept may constitute an the exceptional distribution of a sin-
gle or multiple variables, which can be applied on discrete or continuous data.
More recent target concepts also require the distribution of an additional control
distribution to be representative [17], or generalise to differences in models of
multiple variables [11].

Subgroup discovery has been applied on graphs using SD-Map∗ [20] and
variants for community detection [3], while in another line of work DCM [24]
greedily optimises an introduced a community score based on differences of edge
counts within, outside and across the subgroup boundary. Since our work is ori-
ented toward dense subgraphs, perhaps the most relevant work is LDENSE [13],
which adapts the greedy densest subgraph algorithm [10] to only search within
describable subgroups as an approach to find overlapping communities. While
LDENSE only uses edge statistics, SCPM [26] introduces a measure which
samples quasi-cliques for each candidate subgroup to estimate the portion of
its vertices covered by them, and can only be heuristically optimised, although
with probabilistic guarantees. In contrast, we aim at a measure based on the
well structured k-cores, further equipped with a tight optimistic estimate in an
exact method. In our experiments we compare against both.

5 Experiments

In this section we experimentally study the properties of the RoSi algorithm.
We make available our source code and all datasets for research purposes.2 All
reported experiments were run single-threaded on Xeon E5-2643 3.4GHz pro-
cessor machines with 256GB of memory.

We consider 10 datasets that together span multiple domains and different
kinds of represented entities and relations: 4 datasets from the SNAP database,
2 published datasets from the HetRec2011 workshop, the Million Song, the
GATT/WTO, the DBLP and IMDB datasets. These consist of both graphs and
multi-graphs, and describe various types of networks: social, similarity, co-occurrence,
and collaboration networks, among others.

2All content accessible at https://eda.mmci.uni-saarland.de/rosi.
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Fig. 5 [Lower is Better]: Efficiency of the optimistic estimators: higher pruning
efficiency translates to less expanded nodes and thus shorter running times.
Experiments exceeding a runtime of 36 hours (dotted line) are faded out.

Efficiency of RoSi: We now study how the efficiency of RoSi is affected by the
pruning potential of the chosen optimistic estimator. We refer to these as global-
independent (Eq. 10) (GI), global-joint (11) (GJ), induced-independent (12)
(UI), and the tightest one as induced-joint (17) (UJ) where global indicates
whether average coreness is bound using the coreness of G or G[U ], and inde-
pendent indicates whether the fc and fd terms were maximised independently.

For the experiments we need to specify 1) the trade-off parameter γ, 2)
optionally set a depth limit and 3) set the approximation factor α. For the former
we use γ ∈ {1/3, 2/3, 1/2}, corresponding to representative use cases: favouring
coverage, density, or balancing the importance of the two, respectively. Then,
for each of these γ we run the RoSi algorithm using f̂UJ and perform an exact
search on each of dataset (i.e., with no depth limit and approximation factor
α = 1); as long as a dataset needs more than a fixed time of 7 hours, we either
lower the approximation factor α by 0.1 or lower the allowed depth by one,
favouring a deeper search when possible.

For each configuration we run RoSi with every estimator for up to 36 hours
and measure the wall–clock time needed for each of them; the results are listed
in Fig. 5a. We note that f̂UJ most of the times outperforms all other estimators,
whenever they do terminate, or is on par with the fastest among them.

To confirm that f̂UJ prunes the most, we also provide the number of expanded
nodes during the search (Fig. 5b). Since for each dataset the order of predicates
Π is fixed, all search nodes are expanded in the same order. Within this sequence,
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Fig. 6 [Upper right is Better]: RoSi is not only able to discover subgroups with
the highest robust connectedness, as expected; at the same time, its scores on
typical density are on par with competing methods.

pruning allows to skip sub-optimal search nodes with smaller or larger jumps,
when the bound is loose or tighter, respectively. Importantly, during approximate
search (α � 1) pruning becomes overzealous: then a bound might skip a good
node, which a looser bound would “fail” to skip; this occasionally leads to an
advantage for the looser bound, later on. This is more likely to occur as α
lowers; in our experiments this only happens for the Lastfm-Songs (γ = 2

3 )

when f̂GJ gains a slight advantage over f̂UJ; this does not surprise given the
heavy approximation rate of 50%.

The experiments corroborate that the superior pruning of f̂UJ allows to prac-
tically optimise large real-world graphs.

Optimality of RoSi: We now demonstrate that RoSi is useful for finding
robustly connected subgraphs with descriptions, even with an approximate op-
timisation, and compare it to representative works for the described approaches
in Section 4. At the same time, we experimentally study how well it performs
under the typical density: the edge to vertex ratio |U |/|E(U)| of subgraph G[U ].

We distinguish the compared methods as those who provide descriptions and
those who do not. The first category includes LDENSE [13] and SCPM [26],
which both search for dense subgraphs, and also two measures using subgroup
discovery for community detection: that of the inverse conductance (COIN [4])
and local modularity (LMDL [3]). We provide the results for a selection of



datasets for which most competing methods complete in Figure 6a. We see
that RoSi scores the highest of all in terms of both measures. Although both
LDENSE and SCPM search for dense subgraphs, neither is exact, with the first
using a greedy approximation and the latter randomly samples quasi-cliques. The
latter two unsurprisingly score higher than RoSi in terms of inverse conductance
and local modularity (results omitted as irrelevant), however this is by far not
the case for the two measures we are aiming at.

We next compare RoSi with PICS and AMEN, two different approaches
for cohesive subgroups, which are not constrained by having to provide descrip-
tions. For both methods we show all vertex sets in the Pareto front of the two
metrics. We represent these solutions in Figure 6b with empty circles to desig-
nate that they do not correspond to a description. Although rarely, the resulting
subgraphs can happen to exceed the quality of RoSi in density and/or robust
connectedness, as their optimisation is less constrained. To put them in perspec-
tive, however, we also mine the closest subgroup in terms of the Jaccard distance
to the one provided by each algorithm, and link to it the unconstrained solution
with the arrow. As expected, these solutions score lower than those of RoSi.

Interpretable Subgraph Descriptions: To study if the discovered subgraphs
are meaningful, we mine the top describable subgraph for a subset of datasets
which have attributes that are easily interpretable for a lay person. We do
this for a sliding trade-off parameter, once again selected from the set γ ∈
{0.1, 0.15, 0.2, . . . , 0.9}. We list the discovered subgroups in Table 1 and give
example interpretations for them below.

Table 1a describes collaborating cast members from the IMDB dataset. We
first focus on large subgraphs, and for 0.1 ≤ γ < 0.3 we discover: the drama
movie cast has a robust connectedness of 1.8 collaborations more than what is
usual in the entire industry. If we balance size and connectedness, we find that
established actors (debut before ’96) not nominated by the London BFI festival
have collaborated well with each other (12 collaborations more than usual). This
reveals that the London BFI festival seems to select more diverse films, at least
regarding established actors. When we lay more importance in connectedness,
we discover that these two patterns joined together (established dramedy actors
not selected by BFI) describe a very robustly connected group. What is more,
additionally requiring that a movie is produced in the US is alone a substantial
factor of connectedness.

We also report selected informative subgraphs discovered from another 4
datasets (Table 1b). Interesting findings include that the Google+ social network
contains a community of photographers, which have 140 other photographers
as friends on average more than the dataset average; similarly, in Twitter, the
followers of the American artist Hayley Williams are exceeded by 120 connections
the average connection in the dataset. From the DBLP dataset we notice that the
people publishing in the ICDM conference have a slight higher tendency to cite
other people of the same field, and finally the discoveries of the GATTWTO dataset
shows that countries which are part of the GSP trade agreement are trading
with an extra 253 trade routes on average more than the dataset usual.
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(a) Discovered subgraphs from IMDB.

Dataset γ Description SizeDens.

Google+ [0.1 −0.9 ] photographer 2 835 138.9
Twitter [0.1 −0.85)@yellyahwil. 740 119.9
DBLP [0.1 −0.35)ICDM 9 022 0.1

GATTWTO [0.25−0.55)GSP-member 110 253.5

(b) Discovered subgraphs of special interest.

Table 1: Discovered subgraphs over the trade-off parameter.

6 Conclusion

We studied the problem of finding robustly connected subgraphs that are easily
described. We measure this property by a coreness-based score that ranks highly
those subgraphs that contain node clusters that are difficult to shatter. We used
a description language that comprises all logical conjunctions over predicates
derived from node attributes. We then showed how to find a vertex set a) whose
induced subgraph maximises this measure of robust connectedness subject to b)
accepting a simple description from this language.

Due to the combinatorial nature of this problem, to solve it exactly we use
RoSi, the iterative deepening variant of BnB, which we further improve to
efficiently overcome redundant descriptions in our language. For its use we also
develop an optimistic estimator which is optimal in the default configuration.
Importantly, RoSi can also work as a tunable any-time approximate algorithm.

Our experiments show that, although our problem is inherently exponential,
RoSi can analyse real-world graphs with up to millions of edges and tens of
thousands of vertices. Importantly, the results are meaningful and interpretable.
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