
Chapter 8
Mining and Using Sets of Patterns through
Compression

Matthijs van Leeuwen and Jilles Vreeken

Abstract In this chapter we describe how to successfully apply the MDL principle
to pattern mining. In particular, we discuss how pattern-based models can be de-
signed and induced by means of compression, resulting in succinct and characteristic
descriptions of the data.

As motivation, we argue that traditional pattern mining asks the wrong question:
instead of asking for all patterns satisfying some interestingness measure, one should
ask for a small, non-redundant, and interesting set of patterns—which allows us
to avoid the pattern explosion. Firmly rooted in algorithmic information theory,
the approach we discuss in this chapter states that the best set of patterns is that
set that compresses the data best. We formalize this problem using the Minimum
Description Length (MDL) principle, describe useful model classes, and briefly
discuss algorithmic approaches to inducing good models from data. Last but not
least, we describe how the obtained models—in addition to showing the key patterns
of the data—can be used for a wide range of data mining tasks; hence showing that
MDL selects useful patterns.

Keywords Compression · MDL · Pattern set mining · Data summarization

1 Introduction

What is the ideal outcome of pattern mining? Which patterns would we really like
to find? Obviously, this depends on the task at hand, and possibly even on the user.
When we are exploring the data for new insights the ideal outcome will be different
than when the goal is to build a good pattern-based classifier.

There are, however, a few important general observations to be made. For starters,
we are not interested in patterns that describe noise—we only want patterns that
identify important associations in the data. In pattern mining, the function that usually

M. van Leeuwen (�)
KU Leuven, Leuven, Belgium
e-mail: matthijs.vanleeuwen@cs.kuleuven.be

J. Vreeken
Max-Planck Institute for Informatics and Saarland University, Saarbrücken, Germany
e-mail: jilles@mpi-inf.mpg.de

C. C. Aggarwal, J. Han (eds.), Frequent Pattern Mining, 165
DOI 10.1007/978-3-319-07821-2_8, © Springer International Publishing Switzerland 2014



166 M. van Leeuwen and J. Vreeken

determines the importance of a pattern in this regard is called an interestingness
measure.1

The traditional pattern mining question is to ask for all patterns in the data that
satisfy some interestingness constraint. For example, all patterns that occur at least
n times, or, those that are so-and-so significant according to a certain statistical test.
Intuitively this makes sense, yet in practice, this approach rarely leads to satisfactory
results.

The primary cause is the pattern explosion. While strict constraints only result
in few patterns, these are seldom informative: they are the most obvious patterns,
and hence often long-since common knowledge. However, when we loosen the
constraints—to discover novel associations—the pattern explosion occurs and we
are flooded with results. More often than not orders of magnitude more patterns
are returned than there are rows in the data. In fact, even for modest amounts of
data billions of patterns are discovered for non-trivial constraints. Clearly, in such
numbers these patterns are impossible to consider by hand, as well as very difficult
to use in any other task—therewith effectively negating the goal of mining these
patterns in the first place. Not quite the ideal result.

It does, however, provide us a second observation on the ideal outcome: we do
not want to have too many results. In particular, we want to avoid redundancy: every
pattern should be interesting or useful with regard to all of the other patterns in
the result.

Simply put, traditional pattern mining has been asking the wrong question. In
most situations, what we really want is a small, non-redundant, and as interesting
possible group of patterns. As such, instead of asking for all patterns that satisfy
some constraint, we should ask for the set of patterns that is optimal with regard to a
global interestingness criterion. This means evaluating groups of patterns indirectly,
i.e. by first constructing a model using these patterns, and then scoring the quality of
that model. The main questions are then how to construct such a model, and which
criterion should be used? Clearly, this depends on the task at hand.

In this chapter, we focus on exploratory data analysis. That is, our goal is to
explore the data for new insights, to discover any local structure in the data—in
other words, to discover patterns that describe the most important associations of
the data, patterns that capture the distribution of the data. As such, we are looking
for a set of patterns that models the data well. To this end, we need a criterion
that measures both how well the patterns capture the distribution of the data, and—
to avoid overfitting and redundancy—how complex the set of patterns is. Given a
global interestingness criterion we can perform model selection and identify the
best model. There are a few such criteria available, including Akaike’s Information
Criterion (AIC) [2] and the Bayesian Information Criterion (BIC) [53]. For pattern
mining, the Minimum Description Length (MDL) principle [52] is the most natural
choice. It provides a principled, statistically well-founded, yet practical approach for
defining an objective function for descriptive models—which, as patterns describe
part of the data, fits our setting rather well.

1 See Chap. 5 for a detailed overview of interestingness measures.
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MDL allows us to unambiguously identify the best set of patterns as that set that
provides the best lossless compression of the data. This provides us with a means to
mine small sets of patterns that describe the distribution of the data very well: if the
pattern set at hand would contain a pattern that describes noise, or that is redundant
with regard to the rest, removing it from the set will improve compression. As such,
the MDL optimal pattern set automatically balances the quality of fit of the data with
the complexity of the model—without the user having to set any parameters, as all
we have to do is minimize the encoding cost.

In this chapter we will give an overview of how MDL—or, compression—can be
used towards mining informative pattern sets, as well as for how to use these patterns
in a wide range of data mining tasks.

In a nutshell, we first discuss the necessary theoretical foundations in Sect. 2. In
Sect. 3 we then use this theory to discuss constructing pattern-based models we can
use with MDL. Section 4 covers the main approaches for mining good pattern sets,
and in Sect. 5 we discuss a range of data mining tasks that pattern-based compression
solves. We discuss open challenges in Sect. 6, and conclude in Sect. 7.

2 Foundations

Before we go into the specifics of MDL for pattern mining, we will have to discuss
some foundational theory.

Above, we stated that intuitively our goal is to find patterns that describe interesting
structure of the data—and want to avoid patterns that overfit, that describe noise.
This raises the questions, what is significant structure, and where does structure stop
and noise begin?

Statistics offers a wide range of tests to determine whether a result is significant,
including via Bayesian approaches such as calculating confidence intervals, as well
as frequentist approaches such as significance testing [17]. Loosely speaking, these
require us to assume a background distribution or null hypothesis, and use different
machinery to evaluate how likely the observed structure is under this assumption.

While a highly successful approach for confirming findings in science, in our
exploratory setting this raises three serious problems. First and foremost, there are
no off-the-shelf distributions for data and patterns that we can test against. Second,
even if we could, by assuming a distribution we strongly influence which results
will be deemed significant—a wrong choice will lead to meaningless results. Third,
the choice for the significance or confidence thresholds is arbitrary, yet strongly
influences the outcome. We want to avoid such far-reaching choices.

These problems were acknowledged by Ray Solomonoff, Andrey Kolmogorov,
and Gregory Chaitin, whom independently invented and contributed to what is now
known as algorithmic information theory [12]. In a nutshell, instead of using the
probability under a distribution, in algorithmic information theory we consider the
algorithmic complexity of the data. That is, to measure the amount of information
the data contains by the amount of algorithmic ‘effort’ is required to generate the
data using a universal Turing machine. There are different ways of formalizing such
‘effort’. Here, we focus on Kolmogorov complexity.
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2.1 Kolmogorov Complexity

Kolmogorov complexity measures the information content of a string s; note that
any database D can be serialized into a string. The Kolmogorov complexity of s,
KU (s), is defined as the length in bits of the shortest program p for a Universal Turing
machine U that generates s and then halts. Formally, we have

KU (s) = min
p:U (p)=x

|p| .

Intuitively, program p can be regarded as the ultimate compressor of s.
Let us analyze what this entails. First of all, it is easy to see that every string s has

at least one program that generates it: the program p0 that simply prints s verbatim.
Further, we know that if the string is fully random, there will be no shorter program
than p0. This gives us an upper bound. In fact, this allows us to define what structure
is, and what not. Namely, any (subset of) the data for which K(s) is smaller than the
length of p0 exhibits structure—and the program p is the shortest description of this
structure.

Loosely speaking, the lower bound for K is zero, which will only be approximated
when the data s is very simple to express algorithmically. Examples include a long
series of one value, e.g., 000000000 . . . , but also data that seems complex at first
glance, such as the first n digits of π , or a fractal, have in fact a very low Kolmogorov
complexity—which matches the intuition that, while the result may be complex, the
process for generating this data can indeed be relatively simple.

In fact, we can regard p as two parts; the ‘algorithm’ that describes the compress-
ible structure of s, and the ‘input’ to this algorithm that express the incompressible
part of s. Separating these two components in a given dataset is exactly the goal of
exploratory data analysis, and as such Kolmogorov Complexity institutes the ideal.
Sadly, however, K(s) is not computable. Apart from the fact that the space of possible
programs is enormous, we face the problem that p has to generate s and then halt.
By the halting problem we are unable to make that call.

This does not mean Kolmogorov complexity is useless. Quite the contrary, in
fact. While beyond the scope of this chapter, it provides the theoretical foundations
to many aspects of data analysis, statistics, data mining, and machine learning. We
refer the interested reader to Li and Vitány [40] for a detailed discussion on these
foundations.

Although Kolmogorov complexity itself is not computable, we can still put it
to practice by approximating it. With p we have the ultimate compressor, which
can exploit any structure present in s. The incomputability of K(s) stems from this
infinite ‘vocabulary’, as we have to consider all possible programs. We can, however,
constrain the family of programs we consider to a set for which we know they halt, by
limiting this vocabulary to a fixed set of regularities. In other words, by considering
lossless compression algorithms.
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2.2 MDL

Minimum Description Length (MDL) [20, 52], like its close cousin Minimum
Message Length (MML) [69], is in this sense a practical version of Kolmogorov
Complexity [40]. All three embrace the slogan Induction by Compression, but the
details on how to compress vary. For MDL, this principle can be roughly described
as follows.

Given a set of models2 M, the best model M ∈ M is the one that minimizes

L(D, M) = L(M) + L(D|M)

in which

• L(M) is the length, in bits, of the description of M , and
• L(D|M) is the length, in bits, of the description of the data when encoded with

M .

This is called two-part MDL, or crude MDL—as opposed to refined MDL, where
model and data are encoded together [20]. We consider two-part MDL because we
are specifically interested in the compressor: the set of patterns that yields the best
compression. Further, although refined MDL has stronger theoretical foundations, it
cannot be computed except for some special cases.

2.2.1 MDL and Kolmogorov

The MDL-optimal model M has many of the properties of the Kolmogorov optimal
program p. In fact, two-part MDL and Kolmogorov complexity have a one-to-
one connection [1, 20]. Loosely speaking, the two terms respectively express the
structure in the data, and the deviation from that structure: L(M) corresponds to
the ‘algorithm’ part of p, which generates the structure. L(D | M), on the other
hand, does not contain any structure—as otherwise there would be a better M—and
can be seen as the ‘parameter’ part of p. One important difference is that L(D, M)
happily ignores the length of the decompression algorithm—which would be needed
to reconstruct the data given the compressed representation of the model and data.
The reason is simple: its length is constant, and hence does not influence the selection
of the best model.

2.2.2 MDL and Probabilities

Any MDL-based approach encodes both the data and the models, for which codes
are required. It is well-known that there is a close relation between probability dis-
tributions and optimal codes. That is, Shannon’s source coding theorem states that

2 MDL-theorists tend to talk about hypotheses in this context
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the optimal code length for a given symbol in a string is equal to the − log of the
probability of observing it in the string [12].

As such, an alternate interpretation of MDL is to interpret L(D | M) as the
(negative) log-likelihood of the data under the model, − log Pr (D | M), and to regard
L(M), as the negative log-likelihood of the model, − log Pr (M), or, a regularization
function. Hence, looking for the model that gives the best compression is similar to
looking for the maximum likelihood model under a budget. As such it has a similar
shape to Akaike’s Information Criterion (AIC) [2] and the Bayesian Information
Criterion (BIC) [53]. This of course assumes that there is a distribution for models,
as well as that we have a generative model for data that can be parameterized by M .
This is often not the case.

In MDL, however, we are concerned with descriptive models—not necessarily
generative ones. As such, different from Bayesian learning, in both Kolmogorov
complexity and MDL we evaluate only the data and explicit model at hand—we
do not ‘average’ over all models, so to speak, and hence do not need access to a
generative model. Moreover, MDL is different in that it requires a complete, lossless
encoding of both the model and the data while BIC and AIC penalize models based
only on the number of parameters.

In practice, while (refined) MDL and BIC are asymptotically the same, the two
may differ (strongly) on finite data samples. Typically, MDL is a bit more conserva-
tive. For a detailed discussion on the differences between BIC and MDL we refer to
Grünwald [20].

Using MDL in Practice To use MDL in practice, one has to define the model class
M, how a single model M ∈ M describes a database, and how all of this is encoded
in bits. That is, we have to define a compression scheme. In addition, we need an
algorithm to mine—or approximate—the optimal model.

A key advantage of MDL is that it removes the need for user-defined parameters:
the best model minimizes the total encoded size. Unfortunately, there are also disad-
vantages: (1) contrary to Kolmogorov Complexity, a model class needs to be defined
in advance, and (2) finding the optimal model is often practically infeasible. Conse-
quently, important design choices have to be made, and this is one of the challenges
of the compression-based approach to exploratory data mining.

A standard question regarding the use of MDL concerns the requirement of a
lossless encoding: if the goal is to find very short descriptions, why not use a lossy
encoding? The answer is two-fold.

First, and foremost, lossless encoding ensures fair comparison between models:
we know that every model is evaluated based on how well it describes the complete
dataset. With lossy compression, this is not the case: two models could have the same
L(D, M)—one describing only a small part of the data in high detail, and the other
describing all the data in low detail—and unlike for lossless compression, we would
have no (principled) way of choosing which one is best.

Second of all, we should point out that compression is not the goal, but only
a means to select the best model. By MDL, the best model provides the shortest
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description out of all models in the model class, and it is that model that we are inter-
ested in—in the end, the length of the description is often not of much interest. When
compression is the goal, a general purpose compressor such as ZIP often provides
much better compression, as it can exploit many types of statistical dependencies.

In a similar vein, is it also important to note that in MDL we are not concerned with
materialized codes, but only interested in their lengths—again, as model selection
is the goal. Although a complete overview of all useful codes—for which we can
compute the optimal lengths in practice—is beyond the scope of this chapter, we
will discuss a few instances in the next chapter, where we will discuss how to use
MDL for pattern mining. Before we do so, however, let us quickly go into the general
applicability of MDL in data mining.

2.3 MDL in Data Mining

Faloutsos and Megalooikonomou [15] argue that Kolomogorov Complexity and
Minimum Description Length [20, 52] provide a powerful and well-founded ap-
proach to data mining. There exist many examples where MDL has been successfully
employed in data mining, including, for example, for classification [37, 50], clus-
tering [6, 31, 39], discretization [16, 30], defining parameter-free distance measures
[11, 28, 29, 66], feature selection [48], imputation [65], mining temporally surprising
patterns [8], detecting change points in data streams [36], model order selection in
matrix factorization [45], outlier detection [3, 58], summarizing categorical data [43],
transfer learning [54], discovering communities in matrices [9, 47, 63] and evolving
graphs [60], finding sources of infection in large graphs [49], and for making sense
of selected nodes in graphs [4].

We will discuss a few of these instances in Sect. 5, but first cover how to define
an MDL score for a pattern based model.

3 Compression-based Pattern Models

In this section we introduce how to use the above foundations for mining small sets
of patterns that capture the data distribution well. We will give both the high level
picture and illustrate with concrete instances and examples. Before we go into details,
let us briefly describe the basic ingredients that are required for any pattern-based
model.

We assume that a dataset D is a bag of elements t of some data type—which
we, for simplicity, will refer to as tuples. In the context of frequent itemset mining,
each t is a transaction over a set of items I, i.e., t ⊆ I. Similarly, we can consider
sequences, trees, graphs, time series, etc. Let us write T to denote the universe of
possible tuples for a given data type. Clearly, all tuples in D are elements from T .
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Given a dataset, on of the most important choices is the pattern language X . A
pattern language is the set of all possible patterns that we can discover for a given
data type. In principle, a pattern can be any structure that describes the distribution
of (a subset of) the data. Given the topic of the book, we focus on frequent patterns;
e.g., when we consider itemsets, X can be the set of all possible itemsets, while for
structured data, X can consist of sequential patterns, subgraphs, etc.

Clearly, the choice of X is highly important, as it determines the type of structure
that we will be able to discover in the data. Another way of thinking about X is that
it defines the ‘vocabulary’ of the compressor. If one chooses a pattern language that
is highly specific, it may be impossible to find relevant structure of that type in the
data. On the other hand, if a very rich, i.e., more complex pattern language is chosen,
the encoding and search for the model can become rather complicated.

3.1 Pattern Models for MDL

Given a class of data and a pattern language, we can start to construct a pattern-based
model. Note that by defining a model class, we essentially fix the set of possible
models M, the possible descriptions, for a given dataset D. Given this space of
possible descriptions, we can employ the MDL principle to select the best model
M ∈ M for D simply by choosing the model that minimizes the total compressed
size. In order to do so, however, we need to be able to compute L(D, M), however,
the encoded length of the model and the data given the model.

We start with the latter, i.e., we first formally define how to compute L(D | M),
the encoded length in bits of the data given the model. Generally speaking, there
are many different ways to describe the same data using one model. However, by
the MDL principle, our encoding should be such that we use the minimal amount of
bits to do so. This helps us to make principled choices when defining the encoding
scheme. Some of these may impose additional constraints and requirements on the
design of the compressor, as well as determine how the score can be used. This is
particularly important in light of subsequently using the pattern-based models in data
mining tasks other than summarization. Here we describe three important properties
that a compressor may have.

Dataset-level Compression At the highest level we need to be able to compare the
encoded size of different databases. The most trivial way to do so is by comparing
the total encoded size, L(D, M), where we induce the MDL-optimal model M for
each D.

This property alone allows us to use compression as a ‘black box’: without paying
any attention to the contents of the models or how datasets are compressed, the MDL
principle can be used to select appropriate models for a given dataset. In fact, this
property does not even require datasets to consist of individual tuples that can be
distinguished, nor does it require models to consist of patterns.
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Moreover, it allows us to use compression for data mining tasks, such as for
computing data dissimilarity. Note that this property generally holds for any generic
compressor, and therefore compression algorithms like those in ZIP, GZIP, BZIP, etc,
can also be used for such tasks. As a concrete example, the family of Normalized
Compression Distance measures [41] rely on this.

As a slight variant, we can also fix the model M and see how well it compresses
another dataset. That is, we require that L(D | M) is explicitly calculable for any D
of the specified data universe T and any M ∈ M. This allows us to calculate how
well a dataset matches the distribution of another dataset. See also Sect. 5.

Tuple-level Compression In addition, a rather useful property is when each tuple
t ∈ D can be compressed individually, independent of all other tuples. That is,
L(t | M) can be computed for a given M . This also implies we can simply calculate
L(D | M) as

L(D | M) =
∑
t∈D

L(t | M).

This property simplifies many aspects related to the induction and usage of the
models. For example, as a consequence, calculating the encoded size can now be
trivially parallelized. More important, though, is that common data mining tasks
such as classification and clustering are now straightforward. More on this later.

Pattern-level Inspection The third and final property that we discuss here is that of
sub-tuple, or, pattern-level inspection. That is, beyond computing L(t | M) we also
want to be able to inspect how a given tuple is encoded: what structure, in the form
of a set of patterns, is used to compress it?

With this property, it becomes possible to provide explanations for certain out-
comes (e.g., explain why is a certain tuple compressed better by one model than by
another), but also to exploit this information to improve the model (e.g., patterns
that often occur together in a tuple should probably be combined). Effectively, it is
this property that makes pattern-based solutions so powerful, as it ensures that in
addition to decisions, we can offer explanations.

3.2 Code Tables

The conceptually most simple, as well as most commonly used pattern-based model
for MDL are so-called code tables (see e.g., [23, 56, 57, 59, 64, 68]). Informally, a
code table is a dictionary, a translation table between patterns and codes. Each entry
in the left column contains a pattern and corresponds to exactly one code word in
the right column. Such a code table can be used to compress the data by replacing
occurrences of patterns with their corresponding codes, and vice versa to decode
an encoded dataset and reconstruct the original the data. Using the MDL principle,
the problem can then be formulated as finding that code table that gives the best
compression.
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Fig. 8.1 Example code table.
The widths of the codes
represent their lengths.
I = {A, B, C}. Note that the
usage column is not part of
the code table, but shown here
as illustration: for optimal
compression, codes should be
shorter the more often they
are used

Code table CT

Usage

A

1

5

A 1

B

1

Itemset Code

0

A B

B

C

C

Next, we describe both the general approach, as well as cover a specific instance
for transaction data. First, we formally define a code table.

Definition 8.1 Let X be a set of patterns and C a set of code words. A code table
CT over X and C is a two-column table such that:

1. The first column contains patterns, that is, elements from X .
2. The second column contains elements from C, such that each element of C occurs

at most once.

We write code(X | CT ) for the code corresponding to a pattern X ∈ CT . Further,
we say PS for {X ∈ CT }, the pattern set of CT .

Example 8.2 Throughout we will use Krimp [57, 68] as a running example. It was
the first pattern set mining method using code tables and MDL, and considers itemset
data. In all examples, a dataset D is a bag of transactions over a set of items I, i.e.,
for each t ∈ D we have t ⊆ I. Patterns are also itemsets and the pattern language
is the set of all possible itemsets, i.e., X = 2I = {X ⊆ I}.

Figure 8.1 shows an example Krimp code table of five patterns. The left column
lists the itemsets, the second column contains the codes. Each bar represents a code,
its width represents the code length. (Note, these are obviously not real codes, but
a simplified representation; for our purposes representing code lengths suffices.)
The usage column is not part of the code table, but only used to determine the code
lengths.

3.2.1 Encoding the Data

Given a dataset D and a code table CT , we need to define how to encode D with
CT . As already mentioned, encoding a dataset is done by replacing occurrences of
patterns in the code table by their corresponding codes. To achieve lossless encoding
of the data, we need to cover the complete dataset with patterns from pattern set PS.
In practice, covering a dataset is usually done on a per-tuple basis, such that each
tuple is covered by a subset of the patterns in the code table. Hence, a code table
normally has all three properties discussed in the previous subsection: it allows for
dataset-level compression, tuple-level compression, and sub-tuple inspection.
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To encode a tuple t from database D with code table CT , a cover function
cover(CT , t) is required that identifies which elements of CT are used to encode
t . The parameters are a code table CT and a tuple t , the result is a disjoint set of
elements of CT that cover t . Or, more formally, a cover function is defined as follows.

Definition 8.3 Let D be a database over a universe of possible tuples T , t a tuple
drawn from D, let CT be the set of all possible code tables over X , and CT a code
table with CT ∈ CT . Then,

∫
cover : CT × T �→ P(X ) is a cover function iff it

returns a set of patterns such that

1. cover(CT , t) is a subset of PS, the pattern set of CT , i.e.,
X ∈ cover

∫
(CT , t) → X ∈ CT

2. together all X ∈ cover(CT , t) cover t completely, i.e., t can be fully reconstructed
from cover(CT , t)

We say that cover(CT , t) covers t.
Observe that this cover function is very generic and allows many dif-

ferent instances. In general, finding a subset of a pattern set that covers

a tuple can be a hard combinatorial problem. Depending on the data universe T ,
pattern language X and requirements imposed by the task, it may therefore be ben-
eficial to impose additional constraints to make the cover function fast and efficient
to compute. Also, note that without any further requirements on code tables, it may
be possible that a code table cannot cover any tuple. To remedy this, a common
approach is to require that any ‘valid’ code table should contain at least all primitive
patterns, i.e., singletons, required to cover any tuple from T .

Example 8.4 We continue the example of Krimp and present its cover function in
Algorithm 4. To allow for fast and efficient covering of transactions, Krimp considers
non-overlapping covers. Its mechanism is very simple: look for the first element in
the code table that occurs in the tuple, add it to the cover and remove it from the
tuple, and repeat this until the tuple is empty. Recalling that tuples and patterns are
both itemsets, we have that a cover is a set of itemsets, s.t.

∀X,Y∈cover(t ,CT )X ∩ Y = ∅,

and
∪X∈cover(t ,CT )X = t.
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Fig. 8.2 Example database,
cover and encoded database
obtained by using the code
table shown in Fig. 8.1.
I = {A, B, C}

A B C

A B C

A B C

A

B

A

Database Encoded databaseCover with CT

A

B

A

A B C

A B

B

C

A B C

A B C

A B C

A B C

A B

B

C

By not allowing itemsets to overlap, it is always unambiguous what the cover of a
transaction is. If overlap would be allowed, it can easily happen that multiple covers
are possible and computing and testing all of them would be a computational burden.

To ensure that each code table is ‘valid’, each CT is required to contain at least
all singleton itemsets from I, i.e., PS ⊇ {{i} | i ∈ I}. This way, any transaction
t ∈ P(I) can always be covered by any CT ∈ CT .

Figure 8.2 shows an example database consisting of 8 itemsets, of which 5 are
identical. Also shown is the cover of this database with the example code table from
Fig. 8.1. In this example, each transaction is covered by only a single itemset from the
code table, resulting in very good compression. Obviously it is often not the case that
complete transactions can be covered with a single itemset. For example, if itemset
{ABC} had not been in the code table, the first five transactions would have been
covered by {AB} and {C}.

To encode a database D using code table CT we simply replace each tuple t ∈ D
by the codes of the patterns in the cover of t ,

t → {code(X | CT )|X ∈ cover(CT , t)}.
Note that to ensure that we can decode an encoded database uniquely we assume
that C is a prefix code, in which no code is the prefix of another code [12].

Example 8.5 Figure 8.2 shows how the cover of a database can be translated into
an encoded database: replace each itemset in the cover by its associated code.

3.2.2 Computing Encoded Lengths

Since MDL is concerned with the best compression, the codes in CT should be cho-
sen such that the most often used code has the shortest length. That is, we should use
optimal prefix codes. As there exists a nice correspondence between code lengths
and probability distributions (see, e.g., [40]), the optimal code lengths can be cal-
culated through the Shannon entropy. In MDL we are only interested in measuring
complexity, and not in materialized codes. As such we do not have to require round
code lengths, nor do we have to operate an actual prefix coding scheme such as
Shannon-Fano or Huffman encoding.



8 Mining and Using Sets of Patterns through Compression 177

Theorem 8.6 Let P be a distribution on some finite set D, there exists an optimal
prefix code C on D such that the length of the code for t ∈ D, denoted by L(t) is
given by

L(t) = − log (P (t)).

Moreover, this code is optimal in the sense that it gives the smallest expected code
size for data sets drawn according to P . (For the proof, please refer to Theorem 5.4.1
in [12].)

The optimality property means that we introduce no bias using this code length.
The probability distribution induced by a cover function is, of course, given by the
relative usage frequency of each of the patterns.

To determine this, we need to know how often a certain code is used. We define
the usage count of a pattern X ∈ CT as the number of tuples t from D where X

occurs in its cover. Normalized, this frequency represents the probability that that
code is used in the encoding of an arbitrary t ∈ D. The optimal code length [40]
then is − log of this probability, and a code table is optimal if all its codes have their
optimal length.

More formally, we have the following definition.

Definition 8.7 Let D be a database drawn from a tuple universe T , C a prefix code,
cover a cover function, and CT a code table over X and C. The usage count of a
pattern X ∈ CT is defined as

usageD(X) = |{t ∈ D|X ∈ cover(CT , t)}|.
This implies a probability distribution over the usage of patterns X ∈ CT in the
cover of D by CT , which is given by

P (X|D, CT ) = usageD(X)∑
Y∈CT usageD(Y )

.

The code(X | CT ) for X ∈ CT is optimal for D iff

L(code(X | CT )) = |code(X | CT )| = − log (P (X|D, CT )).

A code table CT is code-optimal for D iff all its codes, {code(X | CT )|X ∈ CT },
are optimal for D.

From now onward we assume that code tables are code-optimal for the database
they are induced on.

Example 8.8 Figure 8.1 shows usage counts for all itemsets in the code table. For
example, itemset {A, B, C} is used 5 times in the cover of the database. These usage
counts are used to compute optimal code lengths. For X = {A, B, C}:

P (X|D, CT ) = 5

8

L(code(X | CT )) = − log

(
5

8

)
= 0.68
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And for Y = {A}:

P (Y |D, CT ) = 1

8

L(code(Y | CT )) = − log

(
1

8

)
= 3.00

So, {A, B, C} is assigned a code of length 0.68 bits, while {A, B}, {A} and {B} are
assigned codes of length 3 bits each.

Now, for any database D and code table CT over the same set of patterns X we
can compute L(D|CT ) according to the following trivial lemma.

Lemma 8.9 Let D be a database, CT be a code table over X and code-optimal
for D, cover a cover function, and usage the usage function for cover.

1. For any t ∈ D its encoded length, in bits, denoted by L(t |CT ), is

L(t |CT ) =
∑

X∈cover(CT ,t)

L(code(X | CT )).

2. The encoded size of D, in bits, when encoded by CT , denoted by L(D|CT ), is

L(D|CT ) =
∑
t∈D

L(t |CT ).

With Lemma 8.9, we can compute L(D|M), but we also need to know what L(M)
is, i.e., the encoded size of a code table.

Recall that a code table is a two-column table consisting of patterns and codes.
As we know the size of each of the codes, the encoded size of the second column is
easily determined: it is simply the sum of the lengths of the codes. The encoding of
the first column, containing the patterns, depends on the pattern type; a lossless and
succinct encoding should be chosen.

Definition 8.10 Let D be a database, CT a code table over X that is code-optimal
for D, and encode an encoding for elements of X . The size of CT in bits, denoted
by L(CT |D), is given by

L(CT |D) =
∑

X∈CT :usageD(X)�=0

|encode(X)| + |code(X | CT )|.

Note that we do not take patterns with zero usage into account, because they are not
used to code and do not get a finite code length.

With these results we have the total size of the encoded database.

Definition 8.11 Let D be a database with tuples drawn from T , let CT be a code
table that is code-optimal for D and cover a cover function. The total compressed
size of the encoded database and the code table, in bits, denoted by L(D, CT ) is
given by

L(D, CT ) = L(D|CT ) + L(CT |D).
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3.2.3 The Problem

The overall problem is now to find the set of patterns that best describe a database
D. Given a pattern set PS, a cover function and a database, a (code-optimal) code
table CT follows automatically. Therefore, each coding set has a corresponding code
table and we can use this to formalize the problem.

Given a set of patterns F ⊆ X , the problem is to find a minimal subset of F which
leads to a minimal encoded size L(D, CT ). By requiring the smallest possible pattern
set, we make sure it does not contain any unused patterns, i.e., usageCT (X) > 0 for
any pattern X ∈ CT .

More formally, in general terms, we define the problem as follows.

Problem 3.1 (Minimum Description Length Pattern Set) Let D be a dataset of
tuples drawn from T , F ⊆ X a candidate set, and enc an encoding for datasets
over T and models over X . Find the smallest pattern set PS ⊆ F such that for the
corresponding model M the total compressed size with encoding enc, Lenc(D, M),
is minimal.

Naively, one might say that the solution for this problem can be found by simply
enumerating all possible pattern sets given a collection of patterns X . As such, the
search space is already huge: a pattern set contains an arbitrary subset of X , excluding
only the empty set. Hence, there are

2|X |−1∑
k=0

(
2|X | − 1

k

)

possible pattern sets. To determine which pattern set minimizes the objective func-
tion, we have to know the optimal cover function. Even for a greedy strategy such
as covering the data using a fixed order, this explodes to having to consider all pos-
sible orders of all possible pattern sets. To make matters worse, the score typically
exhibits no (weak) (anti-)monotone structure that we can exploit. As such, we relax
the problem and resort to heuristics to find good models instead of the optimum.

3.3 Instances of Compression-based Models

Code tables form a generic model class that can be used with virtually any pattern and
data type, given a suitable encoding. Of course there are also other compression-based
model classes, and we will now discuss instances of both types.

3.3.1 Code Table Instances

The best-known instance of code tables is the one used as running example in this
chapter, i.e., Krimp code tables over itemsets and often used in conjunction with the
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cover function presented in Algorithm 4. As we will see in the next section, there
also exist more sophisticated algorithms for inducing code tables.

In practice, we find that Krimp returns pattern sets in the order of hundreds to a
few thousand of patterns [68], which have been shown to describe the distribution
of the data very well. In the next section we will discuss some of the applications in
which these pattern sets have been successfully put to use.

Akoglu et al. [3] proposed the CompreX algorithm, which describes a categorical
dataset by a set of Krimp code tables—by partitioning the attributes into parts that
correlate strongly, and inducing a Krimp code table for each part directly from the
data.

In frequent pattern mining, and hence Krimp, we only regard associations be-
tween 1s of the data as potentially interesting. This is mostly a matter of keeping
matters computational feasible—clearly there are cases where associations between
occurrences and absences are rather interesting. Less [24] is an algorithm that de-
scribes data not using frequent itemsets, but using low-entropy sets [23]. These are
itemsets for which we see the distribution its occurrences is strongly skewed. Less
code tables consist of low-entropy sets, and it uses these to identify areas of the data
of where the attributes strongly interact. Less code tables typically contain only tens
to hundreds of low-entropy sets. Attribute clustering [43] provides even more suc-
cinct code tables, with the goal to provide good high-level summaries of categorical
data, only up to tens of patterns are selected.

Code table instances for richer data include those for sequential patterns, i.e., serial
episodes. Bathoorn et al. [5] gave a variant of Krimp for sequential patterns without
gaps, wheras the SQS [64] and GoKrimp [34] algorithms provide fast algorithms for
descriptions in terms of serial episodes where gaps are allowed. Like Krimp, these
algorithms find final selections in the order of hundreds of patterns.

Koopman and Siebes [32, 33] discussed the Krimp framework in light of frequent
patterns over multi-relational databases.

3.3.2 Other Model Classes

Like Less, Pack [62] considers binary data symmetrically. Its patterns are itemsets,
but they are modeled in a decision tree instead of a code table. This way, probabilities
can be calculated more straightforwardly and refined MDL can be used for the
encoding. Mtv [44] also constructs a probabilistic model of the data, and aims to
find that set of itemsets that best predicts the data. The framework allows both BIC
and MDL to be used for model selection. Typically, between tens and hundred of
itemsets are selected.

Stijl [63] describes data hierarchically in terms of dense and sparse tiles,
rectangles in the data which contain surprisingly many/few 1s.

We also find compression-based models in the literature that employ lossy com-
pression. While this contradicts MDL in principle, as long as the amount of ‘lost’
data is not too large, relatively fair comparisons between models can still be made.
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Summarization [10] is such an approach, which identifies a group of itemsets such
that each transaction is summarized by one itemset with as little loss of information
as possible. Wang et al. [70] find summary sets, sets of itemsets such that each
transaction is (partially) covered by the largest itemset that is frequent.

There are also model classes where the link to compression exists, but is hidden
from plain sight. Tiling [18] should be mentioned: a tiling is the cover of the database
by the smallest set of itemsets, and is related to Set Cover [27], Minimum Entropy
Set Cover [22], and matrix factorization problems [42, 45].

4 Algorithmic Approaches

So far we have discussed in detail the motivation, theoretical foundations, and models
for compression-based pattern mining. Given the previous, the natural follow-up
question is: given a dataset, how can we find that model that minimizes the total
compressed size?

In this section we aim to give a brief overview of the main algorithmic strategies
for inducing good code tables from data. There are two main approaches we need to
discuss: candidate filtering and direct mining.

In our concise discussion on the complexity of the Minimum Description Length
Code Table problem, we already mentioned that the search space will generally be too
large to consider exhaustively. Hence, as is common with MDL-based approaches,
the common solution is to resort to heuristic search strategies. This obviously implies
that we usually cannot guarantee to find the best possible model, and experimental
evaluation will have to reveal how useful induced models are.

In this section, we will outline common techniques. For a more in-depth discussion
of the individual algorithms, we refer to the original papers; algorithmic aspects are
not the main focus of this chapter.

4.1 Candidate Set Filtering

The definition of Problem 3.1 already hints at the most often used approach: candidate
filtering. While the set of candidates F could consist of all possible patterns X , it can
also be a subset defined by some additional constraints. Typically, F is generated in
advance and given as argument to the algorithm used for model induction.

For example, when inducing itemset-based models, it is common practice to use
closed itemsets with a given minimum support threshold as candidate set. A large
advantage of using smaller candidate sets, i.e., keeping |F | small, is that model
induction can be done relatively quickly.

Given a dataset D and candidate set F , a candidate set filtering method returns
a model M corresponding to a pattern set PS ⊂ F for which L(D, M) is ‘small’.
(Note that we cannot claim that the compressed size is minimal due to the heuristic
nature of filtering methods.)
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4.1.1 Single-pass Filtering

The simplest filtering approach uses the following greedy search strategy:

1. Start with an ‘empty’ model M .
2. Start with an ‘empty’ model M .
3. Add patterns F ∈ F to M one by one. If the addition leads to better compression,

keep it, otherwise, permanently discard F .

Although the basic principle of this approach is very simple, note that there are
important details that need to be worked out depending on the specific model and
encoding. For example, it is often impossible to start with a model that is truly empty:
if a model does not contain any patterns at all, it may be impossible to encode the
data at hand and hence there is no compressed size to start from. Also, adding a
pattern to a model is not always straightforward: how and where in the model should
it be added? Depending on design choices, there may be many possibilities and if
these need all to be tested this can become a computational burden. Finally, in what
order should we consider the candidates in F? Since single-pass filtering considers
every candidate only once, this choice will have a large impact on the final result.

Example 8.12 Krimp employs single-pass filtering with several heuristic choices
to ensure that it can induce good code tables from relatively large datasets and
candidate sets in reasonable time.

To ensure any transaction can be encoded, the induction process departs from the
code table containing all singleton itemsets, i.e., {{i} | i ∈ I}. Candidate itemsets are
considered in a fixed order, on frequencies and lengths, maximizing the probability
that we encounter candidates that aid compression. Finally, with the same goal,
we imposed an order on the itemsets in the code table. Together with the cover
function, which does not allow overlap, this means that each candidate itemset can
be efficiently evaluated. To further illustrate this example, the Krimp algorithm is
given as Algorithm 5.
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Other examples of compression based pattern mining algorithms employing single-
pass filtering include R-Krimp [32], RDB-Krimp [33], Less [24], Pack [62], and
SQS [64].

4.1.2 Iterative Candidate Selection

Single-pass filtering is a very greedy search strategy. One particular point of concern
is that it considers every candidate only once, in fixed order, deciding acceptance or
rejection on the candidate’s quality in relation to only the model mined up to that time.
This means that unless the candidate order is perfect, we will see that candidates get
rejected that would have been ideal later on, and hence that sub-optimal candidates
will be accepted because we do not have access to the optimal candidate at that time.

The reason this strategy still provides good results is exactly the problem it aims
to resolve: redundancy. For every rejected ‘ideal’ candidate we will (likely) see a
good enough variant later on.

The optimal result, however, may be a much smaller set of patterns that describe
the data much better. One way to approximate the optimal result better is to make the
search less greedy. Smets and Vreeken [59] showed that iteratively greedily adding
the locally optimal candidate leads to much better code tables.

1. Start with an ‘empty’ model M .
2. Select that F ∈ F that minimizes L(D, M ∪ F ).
3. Add F to M and remove it from F .
4. Repeat steps 2-3 until compression can no longer be improved.

Naively, this entails iteratively re-ranking all candidates, and taking the best one.
That is, with regard to Chap. 5, this approach can be viewed as the dynamic ranking
approach to pattern set mining.

The naive implementation of this strategy is computationally much more demand-
ing than single-pass filtering, with a complexity of O(|F |2) opposed to O(|F |). On
the upside, it is less prone to local minima. If one desires to explore even a larger parts
of the search space, one could maintain the top-k best models after each iteration
instead of only the single best model. Such a strategy would essentially be a beam
search and is employed by the Groei algorithm, as proposed by Siebes and Kersten
[56] to find good approximations to the problem of finding the best description of
the data in k patterns.

Instead of exactly calculating the quality of each candidate per iteration, which
requires a pass over the data and is hence expensive, we can also employ a quality
estimate. To this end, the Mtv algorithm uses a convex quality estimate [44], which
allows both to effectively prune a large part of the candidate space, as well as to
identify the best candidate without having to calculate the actual score. Slim [59] uses
an optimistic estimate, and only calculates the actual score for the top-k candidates
until one is accepted by MDL.
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4.1.3 Pruning

Another improvement that can be used by any candidate filtering approach is to add
a pruning step: patterns that were added to the model before may become obsolete
later during the search. That is, due to other additions previously added patterns
may no longer contribute to improved compression. To remedy this, we can prune
the model, i.e., we can test whether removing patterns from the model results in
improved compression.

Again, there are many possibilities. The most obvious strategy is to check the
attained compression of all valid subsets of the current pattern set and choose the
corresponding model with minimal compressed size. One could even include a new
candidate pattern in this process, yet this requires considerable extra amount of
computation.

A more efficient alternative is to prune only directly after a candidate F is accepted.
To keep the pruning search space small, one could consider each pattern in the
current model for removal once after acceptance of another pattern, in a heuristic
order. If pruning a pattern does not result in an increased encoded size of data and
model, it apparently no longer contributes to compression. When this is the case, it
is permanently removed from the model. Even simple pruning techniques like this
can vastly improve the compression ratios attained by pattern-based models found
by candidate filtering methods.

Pruning has been shown to be one of the key elements of Krimp [68], as it allows
for removing patterns from the model for which we have found better replacements,
and which if we keep them are in the way (in terms of cost) of other patterns. Pruning
practically always improves performance, both in terms of speed, compression rates,
as well as in smaller pattern sets [23, 64, 68].

4.2 Direct Mining of Patterns that Compress

Candidate filtering is conceptually easy and generally applicable. It allows us to mine
any set of candidate patterns, and then select a good subset. However, the reason
for mining code tables, the pattern explosion, is also the Achilles heel of this two-
stage approach. Mining, storing, and sorting candidate patterns is computationally
demanding for non-trivial data. In particular as lower thresholds correspond to better
models: larger candidate sets induce a larger model space, and hence allow for better
models to be discovered. However, the vast majority of these patterns will never be
selected or make it into the final model, the question is: can’t we mine a good code
table directly from data?

The space of models M is too erratic to allow direct sampling of high-quality
code tables. We can, however, adapt the iterative candidate selection scheme above.
In particular, instead of iteratively identifying the best candidate from F , we use the
current model M to generate candidates that are likely good additions to the model.
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What makes likely a good addition to the model? A pattern that helps to reduce
redundancy in the encoding. In our setting, this means correlations between code
usages. If the code for pattern A and the code for pattern B often co-occur, we can gain
bits using a new code C meaning ‘A and B’. We can hence find good candidates by
mining frequent patterns in ‘encoding space’. Moreover, by employing an optimistic
estimate we can prune large parts of the search space, and efficiently identify the
best pattern [59]. In general terms, we have

1. Start with an ‘empty’ model M .
2. Find that F ∈ X that minimizes L(D, M ∪ F ).
3. Add F to M .
4. Repeat steps 2-3 until compression can no longer be improved.

Because of the strong dependence on the specific encoding and pattern type, pro-
viding a universal algorithmic strategy for step 2 is hardly possible—in itemset data
correlations mean co-occurrences [59], in sequential data it means close-by occur-
rences [64], etc. In general, the current encoding of the data will have to be inspected
to see if there are any ‘patterns’in there that can be exploited to improve compression.

The Slim algorithm [59] was the first to implement this strategy for MDL, and
induces Krimp code tables by iteratively searching for pairs of itemsets that often
occur together. The union of the pair that results in the best improvement in com-
pression is added to the code table. Although it hence considers a search space of
only O(|CT |2) instead of O(|F |2), its results very closely approximate the ideal
local greedy strategy, or, Kramp. In particular for dense data, Slim can be orders
of magnitude faster than Krimp, obtaining smaller code tables that offer much more
succinct descriptions of the data.

To save computation, SQS does not iteratively identify the best candidate, but
instead iteratively generates a set of candidates given the current model, considers
all these candidates in turn, then generates new candidates, etc, until MDL tells it to
stop.

5 MDL for Data Mining

So far, we considered compression for model selection, but it has been argued [15]
and shown in the literature that it can also be used for many (data mining) tasks. For
example, we already referred to the Normalized Compression Distance [41]. Another
concrete example is the usage of MPEG video compression for image clustering [29].

In these examples, existing compression algorithms are used as ‘black boxes’ to
approximate Kolmogorov complexity, and usually only dataset-level compression is
required (to be precise, individual strings/objects are considered as ‘datasets’).

In this chapter, we are particularly interested in compression-based models that
allow for inspection, so that any discovered local structure can be interpreted by
domain experts. For that purpose pattern-based models that can be selected by means
of the MDL principle have been developed. However, we have not yet discussed if
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and how these models can be used for tasks other than describing and summarizing
the data.

In the following we will show how many learning and mining tasks can be natu-
rally formalized in terms of compression, using the pattern-based models and MDL
formulation described in this chapter. In particular, to be able to give more concrete
details we will focus on using code tables as models. Again, it is important to note
that the overall approach can be applied to other compression- and pattern-based
models as well.

5.1 Classification

Classification is a traditional task in machine learning and data mining. Informally,
it can be summarized as follows: given a training set of tuples with class labels and
an ‘unseen’ tuple t without class label, use the training data to infer the correct class
label for t . Next, we describe a simple classification scheme based on the MDL
principle [37].

5.1.1 Classification through MDL

If we assume that a database D is an i.i.d. sample from some underlying data dis-
tribution, we expect that the optimal model for this database, i.e., optimal in MDL
sense, to compress an arbitrary tuple sampled from this distribution well. For this to
work, we need a model that supports tuple-level compression.

In the context of code tables, we make this intuition more formal in Lemma 8.13.
We say that the patterns in CT are independent if any co-occurrence of two patterns
X, Y ∈ CT in the cover of a tuple is independent. That is, P (XY ) = P (X)P (Y ), a
Naïve Bayes [71] like assumption.

Lemma 8.13 Let D be a bag of tuples drawn from T , cover a cover function, CT

the optimal code table for D and t an arbitrary transaction from T . Then, if the
patterns X ∈ cover(CT , t) are independent,

L(t |CT ) = − log (P (t |D, CT )) .

(See [37] for the proof.)
This lemma is only valid under the Naïve Bayes like assumption, which in theory

might be violated. However, by MDL, if there would be patterns X, Y ∈ CT such
that P (XY ) > P (X)P (Y ), there will be a pattern Z in the optimal code table CT

that covers both X and Y .
Now, assume that we have two databases generated from two different underly-

ing distributions, with corresponding optimal code tables. For a new tuple that is
generated under one of the two distributions, we can now decide to which distribu-
tion it most likely belongs. That is, under the Naïve Bayes assumption, we have the
following lemma.
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Fig. 8.3 The code table classifier in action

Lemma 8.14 Let D1 and D2 be two bags of tuples from T , sampled from two
different distributions, CT 1 and CT 2 the optimal code tables for D1 and D2, and t

an arbitrary tuple over T . Then, by Lemma 8.13 we have

L(t |CT 1) > L(t |CT 2) ⇒ P (t |D1) < P (t |D2).

Hence, the Bayes optimal choice is to assign t to the distribution that leads to the
shortest code length.

5.1.2 The Code Table Classifier

The above suggests a straightforward classification algorithm based on code tables.
This classification scheme is illustrated in Fig. 8.3.
The classifier consists of a code table per class. Given a database with class labels,

this database is split according to class, after which the class labels are removed from
all tuples. Then, some induction method is used to obtain a code table for each single-
class database. When the per-class compressors have all been constructed, classifying
unseen tuples is trivial: simply assign the class label belonging to the code table that
provides the minimal encoded length for the transaction.

Note that this simple yet effective scheme requires a code table to be able to
compress any possible tuple, i.e., it should be possible to compute L(t |CT ) for any
t ∈ T . For this it is important to keep all ‘primitive’ patterns in the code table, i.e.,
those that are in the ‘empty’ code table. Further, to ensure valid codes all patterns
should have non-zero usage, which can be achieved by, e.g., applying a Laplace
correction: add one to the usage of each pattern in the code table.

Results of this scheme on itemset data, using Krimp [37] and Pack [62], show this
simple classifier performs on par with the best classifiers in the literature, including
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Naïve Bayes and SVMs. This may be considered an unexpectedly positive result,
as the sole goal of each code table is to characterize and describe an individual
class-based database. The fact that these code tables can in practice also be used
for distinguishing samples drawn from the different distributions means they indeed
capture these very well.

5.2 A Dissimilarity Measure for Datasets

Comparing datasets to find and explain differences is a frequent task in many or-
ganizations. The two databases can, e.g., originate from different branches of the
same organizations, such as sales records from different stores of a chain or the
“same” database at different points in time.A first step towards identifying differences
between datasets is to quantify how different two datasets are.

Although this may appear to be a simple task at first sight, in practice it turns out
to be far from trivial in many cases. In particular, this is true when considering data
types for which no obvious distance measures are available, such as for categorical
data. In this subsection we describe a compression-based difference measure for
datasets (based on [66]).

5.2.1 Code Length Differences

Let D1 and D2 be two databases with tuples drawn from the same data universe T .
The MDL principle implies that the optimal compressor induced from a database D1

will generally provide shorter encodings for its tuples than the optimal compressor
induced from another database D2. This is the same principle as used by the classifier
described in the previous subsection, and again we assume and exploit the tuple-level
compression property.

Formally, let Mi be the optimal model induced from database Di , and t a
transaction in D1. Then, the MDL principle implies that

|L(t |M2) − L(t |M1)|
• is small if t is equally likely under the distributions of D1 and D2;
• is large if t is more likely under the distribution of one database than under the

distribution underlying the other.

Furthermore, the MDL principle implies that for the MDL-optimal models M1 and
M2 and t from D1, the expected average value of L(t |M2)−L(t |M1) is positive. The
next step towards a dissimilarity measure is to aggregate these code length differences
over the dataset.

If we would do this naively, the resulting aggregate would depend on the size of
the data. To avoid this, we normalize by dividing by the ‘native’ encoded size of the
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database, L(D1|M1), and arrive at

ACLD(D1, M2) = L(D1|M2) − L(D1|M1)

L(D1|M1)
.

Like Kullback-Leibler divergence, ACLD is asymmetric: it measures how different
D2 is from D1, not vice versa. While it is reasonable to expect these to be in the same
ballpark, this is not a given.

5.2.2 The Database Dissimilarity Measure

The asymmetric measure allows measuring similarity of one database to an-
other. To make it a practical measure we would like it to be symmetric.
We do this by taking the maximum value of two aggregated differences, i.e.,
max{ACLD(D1, M2), ACLD(D2, M1)}. This can easily be rewritten in terms of
compressed database sizes, as follows.

Definition 8.15 Let D1 and D2 be two databases drawn from T , and let M1 and M2

be their corresponding MDL-optimal models. Then, define the dissimilarity measure
DS between D1 and D2 as

DS(D1, D2) = max

(
L(D1|M2) − L(D1|M1)

L(D1|M1)
,
L(D2|M1) − L(D2|M2)

L(D2|M2)

)
.

Using this measure, we’ll obtain a score of 0 iff the databases are identical, and higher
scores indicate higher dissimilarity. In theory, using MDL-optimal models we find
that DS, like NCD [11] is a metric: the symmetry axiom holds by definition, scores
cannot be negative, and it holds that DS(D1, D2) = 0 iff D1 = D2. The advantage
of DS over NCD is that we only have to induce two models, as opposed to four.

For heuristic model induction algorithms the metric property is difficult to prove.
However, instantiating this measure for itemset data using Krimp, we obtain very
good results [66]: dataset pairs drawn from the same distribution have very low
dissimilarities, whereas dataset pairs from different distributions have substantially
larger dissimilarities.

5.3 Identifying and Characterizing Components

Though most databases are mixtures drawn from different distributions, we often as-
sume only one distribution. Clearly, this leads to suboptimal results: the distributions
need to be modeled individually.

Clustering addresses part of this problem by trying to separate the source com-
ponents that make up the mixture. However, as we do not know upfront what
distinguishes the different components, the appropriate distance metric is hard to
define. Furthermore, in clustering we are only returned the object assignment, and
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not any insight in the characteristics per cluster. For example, what is typical for that
cluster, and how do the different ingredients of the mixture compare to each other?

The pattern- and compression-based models described in this chapter provide all
prerequisites required for data characterization, classification, and difference mea-
surement. If a compression-based approach can be used to identify the components of
a database, each represented by a pattern model, all these advantages can be obtained
‘for free’.

5.3.1 MDL for Component Identification

On a high level, the goal is to discover an optimal partitioning of the database; optimal,
in the sense that the characteristics of the different components are different, while
the individual components are homogeneous. Translating this to MDL, the task is to
partition a given database such that the total compressed size of the components is
minimized—where each component is compressed by its own MDL-optimal model.

The intuition is that similar tuples of a database can be better compressed if
they are assigned to the same partition and hence compressed by the same model.
However, having multiple components, with corresponding models, allows models
to be more specific and hence can be expected to provide better overall compression.
By minimizing the total compressed size, including the sizes of the models, the
different distributions of the mixture are expected to be divided over the partitions.

Following [39], we have the following problem statement:

Problem 5.1 (Identifying Database Components) Let D be a bag of tuples drawn
from T . Find a partitioning D1, · · · , Dk of D and associated models M1, · · · , Mk ,
such that the total compressed size of D,

∑
i∈{1,··· ,k}

L(Mi , Di),

is minimized.
There are a few of observations we should make with regard to this problem.

First of all, note that it is parameter-free: MDL determines the optimal number of
components. Second, asking for both the partitioning and the models is in a sense
redundant. For any partitioning, the best associated models are, of course, the optimal
ones. The other way around, given a set of models, a database partitions naturally:
each tuple goes to the model that compresses it best, as with classification.

The search space, however, is enormous, and solving the problem hard. An ef-
fective and efficient heuristic is to take an EM-like approach [14], starting with a
random partitioning, and iteratively inducing models and re-assigning tuples to maxi-
mize compression, until convergence. Besides automatically determining the optimal
number of components, this approach has been shown to find sound groupings [39].
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5.4 Other Data Mining Tasks

So far we covered some of the most prominent tasks in data mining. However, many
more tasks have been formulated in terms of MDL and pattern-based models. Below,
we briefly describe five examples.

5.4.1 Data Generation—and Privacy Preservation

The MDL principle is primarily geared towards descriptive models. However, these
models can also be employed as predictive models, such as in the classification
example above. Furthermore, under certain conditions, compression-based models
can also be used as generative models.

By exploiting the close relation between code lengths and probability distribu-
tions, code tables can be used for data generation. For categorical data, synthetic
data generated from a Krimp code table has the property that the deviation between
the observed and original frequencies is very small on expectation for all itemsets
[67]. One application is privacy preservation: the generated data has the same char-
acteristics as the original data, yet individual details are lost and specified levels of
anonymity can be obtained.

5.4.2 Missing Value Estimation

Many datasets have missing values. Under the assumption these are missing without
correlation to the data, they do not affect the observed overall distribution. Conse-
quently, despite those missing values, a model of reasonable quality can be induced
given sufficient data. Given such a database and corresponding model, the best es-
timation for a single missing value is the one that minimizes the total compressed
size. We can do so both for individual tuples, a well as for databases with many miss-
ing values: by iteratively imputing the values, and inducing the model, completed
datasets with very high accuracy are obtained [65].

5.4.3 Change Detection in Data Streams

A database can be a mixture of different distributions, but in data streams concept drift
is common: one distribution is ‘replaced’by another distribution. In this context, it is
important to detect when such change occurs. Complicating issues are that streams
are usually infinite, can have high velocity, and only limited computation time is
available for processing.

By first assuming that the data stream is sampled from a single distribution, a
model can be induced on only few samples; how many are needed can be deduced
from the attained compression ratios. Once we have a model, we can observe the
compressed size of the new data; if this is considerably larger than for the earlier
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samples, a change has occurred and a new model should be induced. In particular
for sudden distribution shifts, this scheme is highly effective [36].

5.4.4 Coherent Group Discovery

Whereas the Identifying Database Components problem assumes that we are inter-
ested in a partitioning of the complete database, this task aims at the discovery of
coherent subsets of the data that deviate from the overall distribution. As such, it is
an instance of subspace clustering. In terms of MDL, this means that the goal is to
find groups that can be compressed much better by themselves than as part of the
complete database.

As example application, this approach was applied to tag data obtained for differ-
ent media types [38]. It was shown that using only tag information, coherent groups
of media, e.g., photos, can be discovered.

5.4.5 Outlier Detection

All databases contain outliers, but defining what an outlier exactly is and detecting
them are well-known to be challenging tasks. By assuming that the number of outliers
is small, and given the intuition of what an outlier is this seems a safe assumption,
we know that the largest part of a dataset is ‘normal’. Hence, a model induced on the
database should capture primarily what is normal, and not so much what is an outlier.
Then, outlier detection can be formalized as a one-class classification problem: all
tuples that are compressed well belong to the ‘normal’ distribution, while tuples that
get a long encoding may be considered outliers. For transactional data, this approach
performs on par with the state-of-the-art of the field [58].

5.5 The Advantage of Pattern-based Models

For each and every of these tasks, we have to point out the added benefit of using
a pattern-based model. Besides obtaining competitive, state-of-the-art performance,
these patterns help to characterize decisions. For example, in the case of outlier
detection, we can identify why a tuple is identified as an anomaly by pointing out
the patterns of the norm it does not comply with, as well as how strongly it is an
anomaly—how much effort we have to do in order to make it ‘normal’. Similar
advantages hold for the classification task. For the clustering related tasks, we have
the added benefit that we can offer specialized code tables, specialized descriptions
per subpart of the data; we are not only told which parts of the data should go together,
but also why, what patterns make these data points similar.
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6 Challenges Ahead

Above we showed that compression provides a powerful approach to both mining
and using patterns in a range of data mining tasks. Here we briefly identify and
discuss a number of open research problems.

6.1 Toward Mining Structured Data

When compared to other data types, compressing itemset data is relatively simple.
The most important reason is that the data is unordered over both rows and columns,
and hence tuples can be considered as sets of items, and the data as a bag of tuples.

For ‘spatial’ binary data, where the order of rows and columns does matter, many
tasks already become more difficult. A good example is the extension of tiling, called
geometric tiling [19], which aims at finding a hierarchy of (noisy) tiles that describe
the data well. Finding optimal sub-tiles is more difficult than mining itemsets, as we
now also have to consider every subset of rows. Stijl efficiently finds the MDL-
optimal sub-tile in order to greedily find good tilings [63].

Another possible structural constraint is time: sequences and streams are both
series of data points, where sequences consist of events while data streams usually
consists of complete tuples, e.g., itemsets. Initial attempts to characterize sequence
data with patterns using compression include [64] and [34]. Lam et al. [35] mine
sequential patterns from streams, whereas the goal of Van Leeuwen and Siebes [36]
is to detect changes in data streams. All these are limited though. For example, none
are suited for the high velocity of big data streams, as well as suboptimal for data
consisting of shifting mixtures of distributions. Other open issues include allowing
overlap between patterns, as well as allowing multiple events per time-stamp.

Adding even more structure, we have trees, graphs, as well as multi-relational
data. In this area even fewer results have been published, though arguably these data
types are most abundant. For graphs, SlashBurn [26] uses compression to separate
communities and hubs. For multi-relational data, two variants of Krimp have been
proposed [32, 33], yet their modeling power is limited by their restrictive pattern
languages—nor are direct candidate mining strategies available.

Further, so far no pattern set mining approaches have been proposed for continuous
data. Moreover, all data is assumed to be ‘certain’. However, in bioinformatics, for
example, many data is probabilistic in nature, e.g., representing the uncertainty
of protein-protein interactions. Bonchi et al. [7] proposed an approach to model
uncertain data by itemsets, yet they do so with ‘certain’ itemsets, i.e., without explicit
probabilities. Mining pattern sets from numerical and uncertain data, as well as using
them in compression-based models, are important future challenges.
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6.2 Generalization

While the above challenges concern specialization for structured data types and other
data primitives, another challenge concern the other direction: generalization. One
of the fundamental problems in data mining is that new models, algorithms, and
implementations are needed for every combination of task and data type. Though
the literature flourishes, it makes the results very hard to use for non-experts.

In this chapter we have shown that patterns can actually be useful: for summariza-
tion and characterization, as well as for other tasks. One of the upcoming challenges
will be to generalize compression-based data mining. Can patterns be defined in a
very generic way, so that mining them and using them for modeling remains possi-
ble? For that, progress with regard to both mining and modeling needs to be made.
Both are currently strongly tailored toward specific data and pattern types.

One approach may be to represent everything, both data and patterns, as queries.
With such a uniform treatment, recently proposed by Siebes [55], the ideal of ex-
ploratory data mining might become reachable. Note that the high-level goal of
generalizing data mining and machine learning is also pursued by De Raedt et
al. [51, 21], yet with different focus: their aim is to develop declarative model-
ing languages for data mining, which can use existing solver technology to mine
solutions.

6.3 Task- and/or User-specific Usefulness

While obtaining very good results in practice, MDL is not a magic wand. In existing
approaches, the results are primarily dependent on the data and pattern languages. In
other situations it may be beneficial to take specific tasks and/or users into account.
In other words, one may want to keep the purpose of the patterns in mind.

As an example, the code table classifier described in the previous section works
well in practice, yet it is possibly sub-optimal. It works by modeling the class dis-
tributions, not by modeling the differences between these. Although classification
is hardly typical for exploratory data mining, similar arguments exist for other data
mining tasks.

In this chapter we ignore any background knowledge the user may have. If one
is interested in the optimal model given certain background knowledge, this entails
finding MDL-optimal models given prior distributions—which reduces to the MML
[69] principle. The optimal prior can be identified using the Maximum Entropy
principle [25].3

De Bie [13] argues that the goal of the data miner in data exploration is to model
the user’s belief-state, so that we can algorithmically discover those results that will
be most informative to the user. At the core, this reduces to compression—with the
twist that the decision whether to include a pattern is made by the user.

3 See Chap. 5 for a more complete discussion on MaxEnt.
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6.3.1 The Optimum

A more global issue is the efficiency of the used encodings. Whereas in Kolmogorov
complexity we have access to the ultimate algorithmic compressor, the MDL prin-
ciple assumes that we have access to the ultimate encoding. In practice, we have to
make do with an approximation. While when constructing an encoding we can make
principled choices, we often have to simplify matters to allow for fast(er) induction of
good models. For instance, in Krimp it would be nice if we could encode transactions
using their exact probability given the pattern set. However, calculating frequencies
of an itemset given a set of itemsets and frequencies is known to be PP-hard [61].
Hence Krimp uses a (admittedly crude) approximation of this ideal. A more efficient
encoding would allow to detect more fine-grained redundancy, and hence lead to
smaller and better models. Currently, however, there is very little known on how to
construct a good yet practical encoding.

A second global issue we need to point out is that of complexity. Intuitively,
optimizing an MDL score is rather complex. However, so far we only have hard-
ness results for a simple encoding in Boolean matrix factorization [46]. It may be
that other encodings do exhibit structure that we have not yet identified, but which
may be exploited for (more) efficient search. Alternatively, so far we have no the-
oretical results on the quality of our greedy approximations. It may be possible to
construct non-trivial MDL scores that exhibit sub-modularity, which would allow
approximating the quality of the greedy strategy.

Third, for now assuming the optimization problem is hard, and there are no (useful)
approximation guarantees, we need to develop smart heuristics. We described the two
main approaches proposed so far, candidate filtering and direct mining. Naively, the
larger part of the search space M we consider, the better the model M we’ll be able
to find. However, as the model space is too large, we have to find ways of efficiently
considering what is good. The direct mining approach provides a promising direction,
but is only as good as the quality estimation it employs. Improving this estimation
will allow to prune away more candidates, and concentrate our effort there where it
matters most.

7 Conclusions

We discussed how to apply the MDL principle for mining sets of patterns that are both
informative and useful. In particular, we discussed how pattern-based models can be
designed and selected by means of compression, giving us succinct and characteristic
descriptions of the data.

Firmly rooted in algorithmic information theory, the approach taken in this chapter
states that the best set of patterns is that set that compresses the data best. We
formalized this problem using MDL, described model classes that can be used to this
end, and briefly discussed algorithmic approaches to inducing good models from
data. Last but not least, we described how the obtained models, which are very
characteristic for the data, can be used for numerous data mining tasks, making the
pattern sets practically useful.
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