
The Difference and the Norm
Kailash Budhathoki & Jilles Vreeken



Question of the Day

Say, we have more than one database
over the same domain

How can we characterise the 
similarities -and- differences

between these databases?

How can we do this
without redundancy, and

without setting parameters?



What we want, informally

Saarbrücken

Munich

Berlin



What we want, informally

Saarbrücken

Munich

Berlin
𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆Ω

A global model 𝒮𝒮 consisting of pattern sets 𝑆𝑆 ∈ 𝒮𝒮,
that give local detail and together are optimal for 𝒟𝒟.



The Traditional Approach

Saarbrücken

We run a chain of supermarkets. 
We have one database.

Munich

Berlin

mine freq. patterns



The Traditional Approach

Saarbrücken

We run a chain of supermarkets. 
We have one database.

Munich

Berlin
We drown in 

patterns.mine freq. patterns



The Available Approach

Saarbrücken

We run a chain of supermarkets. 
We have one database.

Munich

Berlin

for example, using KRIMP, or SLIM

mine pattern set



The Available Approach

Saarbrücken

We run a chain of supermarkets. 
We have one database.

Munich

Berlin

for example, using KRIMP, or SLIM

mine pattern set

We only get a 
global overview,
not what’s most 
important per 

store!



The Available Approach

Saarbrücken

We run a chain of supermarkets. 
We have multiple databases.

Munich

Berlin

mine pattern set

mine pattern set

mine pattern set



The Available Approach

Saarbrücken

We run a chain of supermarkets. 
We have multiple databases.

Munich

Berlin Now we have only
local detail.

Between these 
many patterns will 
be redundant yet 
subtly differentmine pattern set

mine pattern set

mine pattern set



The Available Approach
We run a chain of supermarkets. 
We have two databases.

Munich

Berlin
contrast patterns



The Available Approach
We run a chain of supermarkets. 
We have two databases.

Munich

Berlin
contrast patterns

We drown in 
patterns

that only describe 
the difference



What we want, informally

Saarbrücken

Munich

Berlin
𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆Ω

A global model 𝒮𝒮 with local detail 𝑆𝑆𝑖𝑖 ∈ 𝒮𝒮,
without redundancy.



What we want, formally
Let ℐ be a set of items.
Let 𝒟𝒟 be a bag of transaction databases 𝐷𝐷𝑖𝑖 ∈ 𝒟𝒟 over ℐ.
Let 𝑈𝑈 be a set of index sets over 𝒟𝒟, with every 𝑗𝑗 ∈ 𝑈𝑈 identifying a 
subset of 𝒟𝒟 the user wants to be characterised.

Discover the set 𝓢𝓢 of pattern sets 
where each pattern set 𝑆𝑆𝑗𝑗 ⊆ 𝒫𝒫(ℐ), and 

such that there is a pattern set 𝑆𝑆𝑗𝑗 ∈ 𝒮𝒮 for every 𝑗𝑗 ∈ 𝑈𝑈,
that best characterises 𝓓𝓓



MDL

The Minimum Description Length (MDL) principle

given a set of models ℳ, the best model 𝑀𝑀 ∈ ℳ
is that 𝑀𝑀 that minimises

𝐿𝐿 𝑀𝑀 + 𝐿𝐿(𝐷𝐷 ∣ 𝑀𝑀)
in which

𝐿𝐿(𝑀𝑀) is the length, in bits, of the description of 𝑀𝑀

𝐿𝐿(𝑀𝑀 ∣ 𝐷𝐷) is the length, in bits, of the description of 
the data when encoded using 𝑀𝑀

(see, e.g., Rissanen 1978, Grünwald, 2007)



What we want, formally
Let ℐ be a set of items, 𝒟𝒟 a bag of transaction databases 𝐷𝐷𝑖𝑖 ∈
𝒟𝒟 over ℐ, and 𝑈𝑈 a set of index sets over 𝒟𝒟, with every 𝐽𝐽 ∈ 𝑈𝑈
identifying a subset of 𝒟𝒟 the user wants to be characterised.

Discover the set 𝓢𝓢 of pattern sets for which
𝐿𝐿 𝒮𝒮 + 𝐿𝐿 𝒟𝒟 𝒮𝒮

is minimal.

Note: patterns will only be included if they 
aid to describe the data more succinctly, and 
then only in as few as necessary pattern sets



Describing the Data
We know what our models are, let’s discuss how we describe the data

𝐿𝐿 𝒟𝒟 𝒮𝒮 = �
𝐷𝐷𝑖𝑖

𝐿𝐿(𝐷𝐷𝑖𝑖 ∣ 𝐶𝐶𝑖𝑖)

We describe 𝐷𝐷𝑖𝑖 using only the pattern sets in 𝒮𝒮 that are relevant for 𝐷𝐷𝑖𝑖 . 
For example, only 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑆𝑆Ω are relevant for 𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 .

To ensure any transaction can be encoded, we always add all singletons.

Together, we call these the coding set 𝐶𝐶𝑖𝑖 for database 𝐷𝐷𝑖𝑖

(see, e.g., Rissanen 1978, Grünwald, 2007)



Coding set 𝐶𝐶 Transaction 𝑡𝑡

(Similar to Siebes et al 2006, Vreeken et al. 2011)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆Ω



Coding set 𝐶𝐶 Transaction 𝑡𝑡

(Similar to Siebes et al 2006, Vreeken et al. 2011)



Coding set 𝐶𝐶 Transaction 𝑡𝑡

(Similar to Siebes et al 2006, Vreeken et al. 2011)



Coding set 𝐶𝐶 Transaction 𝑡𝑡

(Similar to Siebes et al 2006, Vreeken et al. 2011)



Encoding a database

Coding set 𝐶𝐶

(Similar to Siebes et al 2006, Vreeken et al. 2011)



Optimal prefix codes
The probability for 𝑋𝑋 ∈ 𝐶𝐶 in the cover of 𝐷𝐷 is

𝑃𝑃 𝑋𝑋 𝐶𝐶,𝐷𝐷 =
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑋𝑋

∑𝑌𝑌∈𝐶𝐶𝐶𝐶 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑌𝑌)

The optimal code for the coding distribution 𝑃𝑃
assigns a code to 𝑋𝑋 ∈ 𝐶𝐶 with length

𝐿𝐿 𝑋𝑋 𝐶𝐶,𝐷𝐷 = −log(𝑃𝑃 𝑋𝑋 𝐶𝐶,𝐷𝐷 )

(Shannon, 1948; Thomas & Cover, 1991)



A simple life

To encode optimally, we require actual usages. 
Assuming these, the encoded size of a database is

𝐿𝐿 𝐷𝐷𝑖𝑖 𝐶𝐶𝑖𝑖 = �
𝑋𝑋∈𝐶𝐶𝑖𝑖

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑋𝑋 𝐿𝐿(𝑋𝑋 ∣ 𝐶𝐶𝑖𝑖 ,𝐷𝐷𝑖𝑖)

However… we do not want to know the usages!



Do not want

When we

 store usages per database
we encode optimally but cannot reward generalisation
patterns are globally as expensive as they are locally

 store usages per pattern set
we reward generalisation but with a strong bias
to patterns with similar frequencies between databases

Hmm…



Prequential Coding

Can we encode optimally without knowing the usages?
Yes! By using prequential coding.

The idea is very simple
1) initialise all pattern usages to 𝜖𝜖
2) send next code, increment its usage, repeat

This is order-invariant, rapidly approaches the true 
distribution, and within a constant factor of optimal!

(Grünwald 2007)



Prequential Coding

Can we encode optimally without knowing the usages?
Yes! By using prequential coding.

The idea is very simple
1) initialise all pattern usages to 𝜖𝜖
2) send next code, increment its usage, repeat

This is order-invariant, rapidly approaches the true 
distribution, and within a constant factor of optimal!

(Grünwald 2007)

By encoding prequentially
we can reward patterns that are

characteristic for multiple databases
beyond similar frequency!



Prequential Coding, formally
Formally, things do get a bit more scary, as instead of 

𝐿𝐿 𝐷𝐷 𝐶𝐶 = �
𝑋𝑋∈𝐶𝐶

𝑢𝑢𝑢𝑢𝑢𝑢 𝑋𝑋 𝐿𝐿 𝑋𝑋 𝐶𝐶

we have to compute

𝐿𝐿 𝐷𝐷 𝐶𝐶 = logΓ(𝑢𝑢𝑢𝑢𝑢𝑢 𝐶𝐶 + 0.5|𝐶𝐶)) − log Γ 0.5 𝐶𝐶

−�
𝑋𝑋∈C

(log 2𝑢𝑢𝑢𝑢𝑢𝑢 𝑋𝑋 − 1 ‼ − 𝑢𝑢𝑢𝑢𝑢𝑢(𝑋𝑋))

Fortunately, both logΓ and log 𝑥𝑥‼ can be approximated efficiently.



The Score
For conciseness, we skip the details on how to encode a model.

All that’s left is to find that 𝒮𝒮 that minimises

𝐿𝐿 𝒟𝒟,𝒮𝒮 = 𝐿𝐿 𝒮𝒮 + 𝐿𝐿 𝒟𝒟 𝒮𝒮

This is easier said than done. The search space is enormous, 
the score is not convex, nor is it (anti-)monotonic. 

Hence, we resort to heuristics.



The DIFFNORM Algorithm
Main idea: iteratively reduce redundancy in the current description

Evaluate each 𝑋𝑋 ∪ 𝑌𝑌 of existing 𝑋𝑋,𝑌𝑌 ∈ 𝒮𝒮 for every coding set 𝐶𝐶𝑖𝑖
 determine its optimal assignment to 𝑆𝑆𝑗𝑗 ∈ 𝒮𝒮 s.t. compression is maximal



The DIFFNORM Algorithm
Main idea: iteratively reduce redundancy in the current description

Add that 𝑋𝑋 ∪ 𝑌𝑌 to that subset of 𝒮𝒮 s.t. compression is maximal
 re-consider every existing pattern, prune if it now harms compression



Refining the DIFFNORM Algorithm

Evaluating every pair 𝑋𝑋,𝑌𝑌 ∈ 𝒮𝒮 is wasteful
 instead, we only consider 𝑋𝑋,𝑌𝑌 that are 

co-used in the coding set 𝐶𝐶𝑖𝑖 of any 𝐷𝐷𝑖𝑖

Evaluating compression gain is costly
 requires a full pass over the database
 instead, we estimate compression gain of 

a 𝑋𝑋 ∪ 𝑌𝑌 based on the usages of 𝑋𝑋 and 𝑌𝑌

Finding the true best candidate is costly
 instead, we greedily consider in order of 

estimated gain; keep first with actual gain

Saarbrücken

Munich

Berlin



DIFFNORM in action (1)

Saarbrücken

Munich

Berlin
𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆Ω



DIFFNORM in action (2)

Saarbrücken

Munich

Berlin
𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆Ω



DIFFNORM in action (3)

Saarbrücken

Munich

Berlin
𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆Ω



DIFFNORM in action (4)

Saarbrücken

Munich

Berlin
𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆Ω



DIFFNORM in action (5)

Saarbrücken

Munich

Berlin
𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆Ω



DIFFNORM in action (6)

Saarbrücken

Munich

Berlin
𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆Ω



DIFFNORM in action (7)

Saarbrücken

Munich

Berlin
𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆Ω



DIFFNORM in action (8)

Saarbrücken

Munich

Berlin
𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆Ω



The Experiments

Effective optimisation Accurate estimation



Quantitative Results

Dataset |𝒟𝒟| |𝒥𝒥| 𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑠𝑠) |𝒮𝒮|
Adult 48842 2 25.6 74 757

ChessBig 28056 18 75.3 11 899

Nursery 12960 5 58.3 7 294

Mushroom 8124 2 25.8 17 442

PageBlocks 5473 5 4.3 0 26

Chess 3196 2 20.6 8 265

First, let’s consider some FIMI datasets. 
We run DIFFNORM to mine an 𝑆𝑆𝑖𝑖 per class, and a global 𝑆𝑆Ω



Quantitative Results

Number of patterns per pattern set. 
Leftmost (purple) bar indicates size of 𝑆𝑆Ω

How are the discovered patterns distributed over 𝒮𝒮?



Qualitative Results
Do the discovered patterns make sense?
We consider abstracts of ICDM as data, splitting on `mining’.

𝑆𝑆¬𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
accuracy learn work
svm machine
cluster partition
classifier train
approach learn

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
assoc. rule large datab.
fp tree
prune previous
freq. pat. discover strat. 
support threshold

𝑆𝑆Ω
problem algo. exp. res.
framew. general model
method large set
state [of the] art
evaluation technique

(selection from top-most ranked results)



Meaningless Comparison

|𝒮𝒮|
Dataset DIFFNORM(𝒟𝒟) DIFFNORM(𝒟𝒟∪) SLIM(𝐷𝐷∪)
Adult 757 782 2702

ChessBig 899 769 1420

Nursery 294 371 308

Mushroom 442 435 1667

PageBlocks 26 48 105

Chess 265 264 653

How do these numbers compare to when we mine 𝒟𝒟 globally?

(SLIM by Smets & Vreeken 2012)



Conclusions
When you have multiple databases,
you want a succinct summary of difference and 
norm
 existing methods are highly restricted, and results redundant
 we formalise the problem in terms of MDL

DIFFNORM
 first attempt for multivariate real-valued data
 non-parametric, somewhat simplistic, yet works very well

Ongoing
 how deep does the rabbit hole go?



Causal inference by algorithmic complexity
 solid foundations, clear interpretation, non-parametric
 for any pair of objects of any sort
 for type and token causation

ERGO
 first attempt for multivariate real-valued data
 non-parametric, somewhat simplistic, yet works very well

Ongoing
 how deep does the rabbit hole go?

Thank you!


	The Difference and the Norm
	Question of the Day
	What we want, informally
	What we want, informally
	The Traditional Approach
	The Traditional Approach
	The Available Approach
	The Available Approach
	The Available Approach
	The Available Approach
	The Available Approach
	The Available Approach
	What we want, informally
	What we want, formally
	MDL
	What we want, formally
	Describing the Data
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Encoding a database
	Optimal prefix codes
	A simple life
	Do not want
	Prequential Coding
	Prequential Coding
	Prequential Coding, formally
	The Score
	The DiffNorm Algorithm
	The DiffNorm Algorithm
	Refining the DiffNorm Algorithm
	DiffNorm in action (1)
	DiffNorm in action (2)
	DiffNorm in action (3)
	DiffNorm in action (4)
	DiffNorm in action (5)
	DiffNorm in action (6)
	DiffNorm in action (7)
	DiffNorm in action (8)
	The Experiments
	Quantitative Results
	Quantitative Results
	Qualitative Results
	Meaningless Comparison
	Conclusions
	Slide Number 47

