The Difference and the Norm

Kailash Budhathoki & Jilles Vreeken

Question of the Day

Say, we have more than one database over the same domain

How can we characterise the similarities -and- differences between these databases?

How can we do this without redundancy, and without setting parameters?

What we want, informally

What we want, informally

A **global** model S consisting of pattern sets $S \in S$, that give **local detail** and **together** are optimal for \mathcal{D} .

The Traditional Approach

We run a chain of supermarkets. We have **one** database.

The Traditional Approach

We run a chain of supermarkets. We have **one** database.

We run a chain of supermarkets. We have **one** database.

for example, using KRIMP, or SLIM

We run a chain of supermarkets. We have **one** database.

We only get a **global** overview, **not** what's most important per store!

for example, using KRIMP, or SLIM

We run a chain of supermarkets. We have **multiple** databases.

We run a chain of supermarkets. We have **multiple** databases.

We run a chain of supermarkets. We have **two** databases.

We run a chain of supermarkets. We have **two** databases.

What we want, informally

A global model S with local detail $S_i \in S$, without redundancy.

What we want, formally

Let \mathcal{I} be a set of items.

Let \mathcal{D} be a bag of transaction databases $D_i \in \mathcal{D}$ over \mathcal{I} . Let U be a set of index sets over \mathcal{D} , with every $j \in U$ identifying a subset of \mathcal{D} the user wants to be characterised.

Discover the set *S* of pattern sets

where each pattern set $S_j \subseteq \mathcal{P}(\mathcal{I})$, and such that there is a pattern set $S_j \in S$ for every $j \in U$, that **best characterises** \mathcal{D}

MDL

The Minimum Description Length (MDL) principle

given a set of models \mathcal{M} , the best model $M \in \mathcal{M}$ is that M that minimises

 $L(M) + L(D \mid M)$

in which

- L(M) is the length, in bits, of the description of M
- $L(M \mid D)$ is the length, in bits, of the description of the data when encoded using M

(see, e.g., Rissanen 1978, Grünwald, 2007)

What we want, formally

Let \mathcal{I} be a set of items, \mathcal{D} a bag of transaction databases $D_i \in \mathcal{D}$ over \mathcal{I} , and U a set of index sets over \mathcal{D} , with every $J \in U$ identifying a subset of \mathcal{D} the user wants to be characterised.

Discover the set S of pattern sets for which $L(S) + L(\mathcal{D} | S)$ is minimal.

Note: patterns will **only** be included if they aid to describe the data more succinctly, and then only in as few as necessary pattern sets

Describing the Data

We know what our models are, let's discuss how we describe the data

$$L(\mathcal{D} \mid \mathcal{S}) = \sum_{D_i} L(D_i \mid C_i)$$

We describe D_i using only the pattern sets in S that are **relevant** for D_i . For example, only S_{Saarbr} and S_{Ω} are relevant for D_{Saarbr} .

To ensure any transaction can be encoded, we always add all singletons.

Together, we call these the coding set C_i for database D_i

(see, e.g., Rissanen 1978, Grünwald, 2007)

Transaction t

Transaction t

Encoding a database

ACBDCEABCDE

Coding set C

Itemset

Optimal prefix codes

The probability for $X \in C$ in the cover of D is

$$P(X \mid C, D) = \frac{usage(X)}{\sum_{Y \in CT} usage(Y)}$$

The optimal code for the coding distribution P assigns a code to $X \in C$ with length

$$L(X \mid C, D) = -\log(P(X \mid C, D))$$

(Shannon, 1948; Thomas & Cover, 1991)

A simple life

To encode optimally, we require actual usages. Assuming these, the encoded size of a database is

$$L(D_i \mid C_i) = \sum_{X \in C_i} usage(X)L(X \mid C_i, D_i)$$

However... we **do not want** to know the usages!

Do not want

When we

- store usages per database we encode optimally but cannot reward generalisation patterns are globally as expensive as they are locally
- store usages per pattern set we reward generalisation but with a strong bias to patterns with similar frequencies between databases

Hmm...

Prequential Coding

Can we encode **optimally** without knowing the usages? Yes! By using **prequential coding**.

The idea is very simple

- initialise all pattern usages to ϵ
- ²⁾ send next code, increment its usage, repeat

This is order-invariant, rapidly approaches the true distribution, and within a constant factor of optimal!

Prequential Coding

Can we encode optimally without knowing the usages?

Yes! By us

1)

2)

By encoding prequentially The idea we can **reward patterns** that are initiali characteristic for multiple databases send beyond similar frequency!

This is or e distribution, and within a constant factor of optimal!

(Grünwald 2007)

Prequential Coding, formally

Formally, things do get a bit more scary, as instead of

$$L(D \mid C) = \sum_{X \in C} usg(X)L(X \mid C)$$

we have to compute

$$L(D | C) = \log \Gamma(usg(C) + 0.5|C)) - \log \Gamma(0.5|C|) - \sum_{X \in C} \left(\log \left((2usg(X) - 1)!! \right) - usg(X) \right)$$

Fortunately, both $\log \Gamma$ and $\log x$!! can be approximated efficiently.

The Score

For conciseness, we skip the details on how to encode a model.

All that's left is to find that ${\mathcal S}$ that minimises

 $L(\mathcal{D}, \mathcal{S}) = L(\mathcal{S}) + L(\mathcal{D} \mid \mathcal{S})$

This is easier said than done. The search space is enormous, the score is not convex, nor is it (anti-)monotonic.

Hence, we resort to heuristics.

The DIFFNorm Algorithm

Main idea: iteratively reduce redundancy in the current description

Evaluate each $X \cup Y$ of existing $X, Y \in S$ for every coding set C_i

• determine its optimal assignment to $S_j \in S$ s.t. compression is maximal

The DIFFNorm Algorithm

Main idea: iteratively reduce redundancy in the current description

Add that $X \cup Y$ to that subset of S s.t. compression is maximal

re-consider every existing pattern, prune if it now harms compression

Refining the DIFFNORM Algorithm

Evaluating every pair $X, Y \in S$ is wasteful

 instead, we only consider X, Y that are co-used in the coding set C_i of any D_i

Evaluating compression gain is costly

- requires a full pass over the database
- instead, we **estimate** compression gain of a *X* ∪ *Y* based on the usages of *X* and *Y*

Finding the true best candidate is costly

 instead, we greedily consider in order of estimated gain; keep first with actual gain

DIFFNORM in action (1)

DIFFNORM in action (2)

DIFFNORM in action (3)

DIFFNORM in action (4)

DIFFNORM in action (5)

DIFFNORM in action (6)

DIFFNORM in action (7)

DIFFNORM in action (8)

The Experiments

Effective optimisation

Accurate estimation

First, let's consider some FIMI datasets. We run DIFFNORM to mine an S_i per class, and a global S_{Ω}

Dataset	$ \mathcal{D} $	$ \mathcal{J} $	L%	time(s)	S
Adult	48842	2	25.6	74	757
ChessBig	28056	18	75.3	11	899
Nursery	12960	5	58.3	7	294
Mushroom	8124	2	25.8	17	442
PageBlocks	5473	5	4.3	0	26
Chess	3196	2	20.6	8	265

How are the discovered patterns distributed over S?

Number of patterns per pattern set. Leftmost (purple) bar indicates size of S_{Ω}

Do the discovered patterns make sense? We consider abstracts of ICDM as data, splitting on `mining'.

S_{mining}

assoc. rule large datab. fp tree prune previous freq. pat. discover strat. support threshold

S_{¬mining}

accuracy learn work svm machine cluster partition classifier train approach learn

S_{Ω}

problem algo. exp. res. framew. general model method large set state [of the] art evaluation technique

Meaningless Comparison

How do these numbers compare to when we mine \mathcal{D} globally?

	$ \mathcal{S} $				
Dataset	$DiffNorm(\mathcal{D})$	DiffNorm(\mathcal{D}_{\cup})	$SLIM(D_{\cup})$		
Adult	757	782	2702		
ChessBig	899	769	1420		
Nursery	294	371	308		
Mushroom	442	435	1667		
PageBlocks	26	48	105		
Chess	265	264	653		

Conclusions

When you have multiple databases, you want a succinct summary of **difference and norm**

- existing methods are highly restricted, and results redundant
- we formalise the problem in terms of MDL

DIFFNORM

- first attempt for multivariate real-valued data
- non-parametric, somewhat simplistic, yet works very well

Ongoing

how deep does the rabbit hole go?

Thank you!

Causal inference by algorithmic complexity

- solid foundations, clear interpretation, non-parametric
- for *any* pair of **objects** of *any* sort
- for type and token causation

Ergo

- first attempt for multivariate real-valued data
- non-parametric, somewhat simplistic, yet works very well

Ongoing

how deep does the rabbit hole go?